

Article



# *Lomatium* Species of the Intermountain Western United States: A Chemotaxonomic Investigation Based on Essential Oil Compositions

William N. Setzer <sup>1,2,\*</sup>, Ambika Poudel <sup>2</sup>, Prabodh Satyal <sup>2</sup>, Kathy Swor <sup>3</sup> and Clinton C. Shock <sup>4</sup>

- <sup>1</sup> Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- <sup>2</sup> Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
  - psatyal@aromaticplant.org (P.S.)
- <sup>3</sup> Independent Researcher, 1432 W. Heartland Dr., Kuna, ID 83634, USA
- <sup>4</sup> Department of Crop and Soil Science, Oregon State University, Ontario, OR 97914, USA; clinton.shock@gmail.com
- \* Correspondence: wsetzer@chemistry.uah.edu; Tel.: +1-256-468-2862

Abstract: Lomatium is a genus of 98 species, widely distributed in western North America. This work presents a chemometric analysis of the essential oils of seven species of Lomatium (L. anomalum, L. dissectum var. dissectum, L. multifidum, L. nudicaule, L. packardiae, L. papilion*iferum*, and *L. triternatum* var. *triternatum*) from the intermountain western United States (Oregon and Idaho). The essential oils were obtained by hydrodistillation and analyzed by gas chromatographic methods. Lomatium packardiae essential oil can be characterized as limonene-rich, *L. anomalum* is a species rich in sabinene and  $\alpha$ -pinene, and *L. multifidum* essential oils were rich in myrcene, while L. dissectum var. dissectum essential oils were dominated by octyl acetate and decyl acetate, L. papilioniferum essential oils from western Idaho had high p-cymene and 2-methyl-5-(1,2,2-trimethylcyclopentyl)phenol concentrations, while those from Oregon had relatively high  $\beta$ -phellandrene and sedanenolide levels. The essential oils of *L. triternatum* var. *triternatum* were too variable to confidently assign a chemical type. The major components in the L. nudicaule essential oils were β-phellandrene (16.0–45.7%), (Z)-ligustilide (5.6–47.1%), (E)-β-ocimene (3.3–9.9%), and δ-3-carene (0.2–12.6%). The enantiomeric distributions of α-pinene, camphene, sabinene, β-pinene, limonene, and linalool were also utilized to discriminate between the Lomatium taxa. There are not enough consistent data to properly characterize L. triternatum var. triternatum or the Oregon L. papilioniferum essential oils. Additional research is needed to confidently describe the chemotype(s) of these species.

**Keywords:** anomalum; dissectum; grayi; nudicaule; packardiae; papilioniferum; triternatum; chemotaxonomy; enantiomers

# 1. Introduction

The genus *Lomatium* Raf. (Apiaceae) comprises around 98 species, which are distributed in western North America [1]. The genus is part of one of the largest plant radiations in North America, the Perennial Endemic North American Apiaceae (PENA) clade [2,3]. Several species of *Lomatium* have been used by Native Americans of the Pacific Northwest as medicines as well as food [4]. As part of our continuing interest in essential oils from aromatic and medicinal plants in the intermountain western United States, the purpose of this work is to examine the essential oil compositions, including the



Academic Editor: Othmane Merah

Received: 13 December 2024 Revised: 8 January 2025 Accepted: 10 January 2025 Published: 11 January 2025

Citation: Setzer, W.N.; Poudel, A.; Satyal, P.; Swor, K.; Shock, C.C. *Lomatium* Species of the Intermountain Western United States: A Chemotaxonomic Investigation Based on Essential Oil Compositions. *Plants* 2025, 14, 186. https://doi.org/ 10.3390/plants14020186

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/). enantiomeric distributions of chiral terpenoids, of *Lomatium* species growing in eastern Oregon and western Idaho.

The Lomatium triternatum (nineleaf biscuitroot) complex has a widespread distribution from British Columbia, south into northern California, and east to Montana, Wyoming, Colorado, and New Mexico [5,6]. It is a perennial herb (ca. 20–80 cm tall) growing from a taproot. The leaves are basal with petioles 8–20 cm long, leaves divided 1–3 times. The inflorescence is a loose flat umbel of yellow flowers on stalks 3–10 cm long. The seeds are flat with five ribs and thin wings on the sides [5,7,8]. The taxonomy of the L. triternatum is complex, is not well delineated, and is in flux [2,3,9,10]. These include, but are not necessarily limited to, Lomatium triternatum (Pursh) J.M. Coult. & Rose (which includes the infraspecific taxa L. triternatum var. triternatum, Lomatium triternatum f. lancifolium (H. St. John) H. St. John, Lomatium triternatum subsp. platycarpum (Torr.) Cronquist, Lomatium triternatum var. brevifolium (J.M. Coult. & Rose) Mathias, and Lomatium triternatum var. macrocarpum (J.M. Coult. & Rose) Mathias), Lomatium anomalum Jones ex J.M. Coult. & Rose, and *Lomatium packardiae* Cronquist [1]. As far as we are aware, there are no reports on the essential oils of *L. triternatum*. The purpose of this research is to examine the hypothesis that the volatile phytochemistry of the different taxa of *L. triternatum* will delineate the members of the complex.

Lomatium grayi (J.M. Coult. & Rose) J.M. Coult. & Rose (Gray's biscuitroot) is a large (up to 60 cm tall) perennial herb with a branched basal stem structure and finely divided leaves with a pungent odor. The inflorescence is an umbel with numerous yellow flowers [11]. The native range of L. gravi is east of the Cascades in southern British Columbia, Washington and Oregon, northern Nevada, western Idaho, Utah, western Wyoming, western Colorado, and northwestern New Mexico [12]. However, the Lomatium gravi complex is morphologically diverse across its range. Alexander and co-workers have proposed splitting *L. grayi* into four species based on morphometric analysis [13]. These include Lomatium papilioniferum J.A. Alexander & Whaley (distributed east of the Cascades in southern British Columbia, Washington, Oregon, northern Nevada, and western Idaho), Lomatium klickitatense J.A. Alexander & Whaley (found in Klickitat County, Washington, and surrounding areas), Lomatium depauperatum (M.E. Jones) J.A. Alexander & Whaley (syn. Lomatium grayi var. depauperatum (M.E. Jones) Mathias) (ranges in western Utah and eastern Nevada), and Lomatium grayi (in eastern Idaho, eastern Utah, southwestern Wyoming, and western Colorado). In Idaho, L. papilioniferum is found in western and central Idaho while L. grayi is found only in southeastern Idaho.

Lomatium dissectum (fernleaf biscuitroot) is a perennial herb. The inflorescence is an umbel of numerous small maroon red flowers; the leaves are ternate-pinnately dissected, 15–35 cm wide with a 3–30 cm petiole. The fruit is oblong-ovate to elliptic, 12–16 mm long, with thick lateral wings. The plant occurs in western North America, northern California, north into Washington, and east into Idaho [14,15]. Lomatium dissectum (Nutt.) Mathias & Constance var. dissectum, Lomatium dissectum var. multifidum (Nutt.) Mathias & Constance, and Lomatium dissectum var. eatonii (J.M. Coult. & Rose) Cronquist had been treated as varieties of *L. dissectum*. However, they are currently treated as separate species, Lomatium dissectum (Nutt.) Mathias & Constance and Lomatium dissectum var. multifidum (Nutt.) R.P. McNeill & Darrach (syn. Lomatium dissectum var. multifidum (Nutt.) Mathias & Constance and Lomatium dissectum var. eatonii (J.M. Coult. & Rose) Cronquist [14].

*Lomatium multifidum* is a perennial herb, growing up to 1.2 m tall. The leaves are triangular-ovate to round and ternate-pinnately dissected. The inflorescence is an umbel of numerous small yellow flowers; the fruit is dorsally compressed, with the lateral wings usually well developed. The plant occurs in arid regions of the western United States (Arizona,

California, Colorado, Idaho, Montana, Nevada, Oregon, Utah, Washington, and Wyoming) and into southwestern Canada (British Columbia, Alberta, and Saskatchewan) [16,17].

*Lomatium nudicaule* (Nutt.) J.M. Coult. & Rose (barestem biscuitroot) is a perennial forb with a stout taproot. The plant can reach a height of 20–45 cm; the leaves are compound ternate to biternate, leaflets are oval, 2–5 cm long; the inflorescence is an umbel with yellow flowers; fruits are 8–12 mm long, 2–5 mm wide, with 0.5 mm wide wings. The plant ranges from southern British Columbia, south through Washington and Oregon and into northern California, and east into Idaho Nevada and northwestern Utah [5,18]. There have been no previous reports on the essential oil of *L. nudicaule*.

In this work, we present the essential oil compositions of *L. anomalum* (Figure 1), *L. dissectum* (Figure 2), *L. multifidum* (Figure 3), *L. nudicaule* (Figure 4), *L. packardiae* (Figure 5), *L. papilioniferum* (Figure 6), and *L. triternatum* var. *triternatum* (Figure 7). The purpose of this study is to characterize the volatile components of understudied *Lomatium* species, including enantiomeric distributions of chiral terpenoid components.



**Figure 1.** *Lomatium anomalum* Jones ex J.M. Coult. & Rose. (**A**) Several plants at time of collection (2 June 2022, photograph by K. Swor). (**B**) Photograph of plants at time of collection (30 May 2024, photograph by K. Swor). (**C**) Scan of pressed plant.



**Figure 2.** *Lomatium dissectum* (Nutt.) Mathias & Constance. (**A**) Several plants (photograph by W.N. Setzer). (**B**) Closeup of the inflorescence (photograph by K. Swor). (**C**) Scan of the pressed plant.



**Figure 3.** *Lomatium multifidum* (Nutt.) R.P. McNeill & Darrach. (**A**) Flowering stage (photograph by K. Swor). (**B**) Fruiting stage (photograph by W.N. Setzer). (**C**) Scan of the pressed plant.



**Figure 4.** *Lomatium nudicaule* (Nutt.) J.M. Coult. & Rose. (**A**) Photograph of the plant at the time of collection (21 May 2024, photograph by W.N. Setzer). (**B**) Closeup of the fruits (© Paul Schlichter, with permission [19]). (**C**) Scan of the pressed plant.



**Figure 5.** *Lomatium packardiae* Cronquist. (A) Photograph of the plant (W.N. Setzer). (B) Scan of the pressed plant material.



**Figure 6.** *Lomatium papilioniferum* J.A. Alexander & Whaley. (**A**) Flowering stage (photo by K. Swor). (**B**) Fruiting stage (photo by W.N. Setzer). (**C**) Scan of pressed plant material.



**Figure 7.** *Lomatium triternatum* (Pursh) J.M. Coult. & Rose var. *triternatum*. (**A**) Photograph of the plant (K. Swor). (**B**) Scan of the pressed plant material.

# 2. Results and Discussion

There have been several investigations on *Lomatium* essential oils reported in the literature. A summary of the major components is listed in Table 1.

| Lomatium Species                                                                                                                                          | Collection Site                               | Plant Tissue     | Major Components (>5%)                                                                                                                | Ref. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|------|
| Lomatium brandegeei J.F. Macbr.                                                                                                                           | Slate Peak, Washington                        | Aerial parts     | α-pinene (9.2%), β-phellandrene (60.9%)                                                                                               | [20] |
| <i>Lomatium dasycarpum</i> (Torr. & A. Gray) J.M.<br>Coult. & Rose                                                                                        | Trinity National Forest,<br>California        | Leaves and stems | 3-methyl-2-buten-1-yl 3-methylbutyrate<br>(22.3%), lavandulyl 2-methylbutyrate (16.9%),<br>senkyunolide (9.8%)                        | [21] |
| <i>Lomatium dissectum</i> (Nutt.) Mathias & Constance var. <i>dissectum</i>                                                                               | Six Rivers National Forest,<br>California     | Aerial parts     | 1-octanol (9.0%), octyl acetate (5.3%), palmitic<br>acid (15.3%)                                                                      | [22] |
| Lomatium dissectum var. multifidum (Nutt.) Mathias &<br>Constance (syn. Lomatium multifidum (Nutt.) R.P.<br>McNeill & Darrach)                            | San Bernardino National Forest,<br>California | Aerial parts     | (3Z)-hexenol (18.5%), myrcene (6.0%),<br>palmitic acid (8.6%)                                                                         | [22] |
| Lomatium eastwoodiae (J.M. Coult. & Rose) J.F. Macbr.                                                                                                     | Black Ridge, Colorado                         | Aerial parts     | α-pinene (6.2%), myrcene (5.1%), limonene +<br>β-phellandrene (12.9%), ( <i>E</i> )-β-caryophyllene<br>(12.2%), germacrene D 95.2%)   | [20] |
| <i>Lomatium foeniculaceum</i> subsp. <i>fimbriatum</i> W.L. Theob.                                                                                        | Inyo National Forest, California              | Leaves and stems | (3Z)-hexenol (6.5%), limonene +<br>$\beta$ -phellandrene (6.8%), terpinolene (6.7%),<br>germacrene D (15.9%), (Z)-ligustilide (13.1%) | [23] |
| Lomatium graveolens (S. Watson) J.M. Coult. & Rose                                                                                                        | Provo Peak, Utah                              | Aerial parts     | $\beta$ -pinene (21.6%), limonene + $\beta$ -phellandrene (33.2%), osthole (5.2%)                                                     | [20] |
| <i>Lomatium grayi</i> "new variety" (based on the reported collection site, this is probably <i>Lomatium papilioniferum</i> J.A. Alexander & Whaley) [13] | Elko County, Nevada                           | Aerial parts     | limonene + $\beta$ -phellandrene (17.7%),<br>$\gamma$ -terpinene (16.1%), senkyunolide (44.0%)                                        | [24] |
| <i>Lomatium grayi</i> (J.M. Coult & Rose) J.M. Coult. & Rose var. <i>grayi</i>                                                                            | Utah County, Utah                             | Aerial parts     | myrcene (8.4%), limonene + $\beta$ -phellandrene (27.2%), $\gamma$ -terpinene (10.4%), senkyunolide (24.4%)                           | [24] |
| <i>Lomatium grayi</i> var. <i>depauperatum</i> (M.E.<br>Jones) Mathias                                                                                    | Juab County, Utah                             | Aerial parts     | myrcene (8.1%), limonene + $\beta$ -phellandrene<br>(20.8%), (Z)- $\beta$ -ocimene (18.9%),<br>(Z)-ligustilide (6.7%)                 | [24] |
| Lomatium howelii (S. Watson) Jeps.                                                                                                                        | Eight Dollar Mountain, Oregon                 | Aerial parts     | $(E)$ - $\beta$ -ocimene (5.8%), octyl acetate (24.8%),<br>citronellyl acetate (7.1%), decyl acetate (6.7%),<br>lauryl acetate (5.1%) | [20] |
| Lomatium howelii (S. Watson) Jeps.                                                                                                                        | Low Divide, California                        | Aerial parts     | 1-octanol (11.4%), octyl acetate (23.5%),<br>citronellyl acetate (6.0%), germacrene D (6.0%)                                          | [20] |

**Table 1.** Major components of *Lomatium* essential oils reported in the literature.

| Table | 1. Cont. |
|-------|----------|
|-------|----------|

| Lomatium Species                                                                                         | Collection Site                                | Plant Tissue     | Major Components (>5%)                                                                                                                                                                                                                          | Ref. |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Lomatium junceum Barneby & N.H. Holmgren                                                                 | Emery County, Utah                             | Aerial parts     | α-pinene (24.3%), $\beta$ -pinene (29.3%), limonene<br>+ $\beta$ -phellandrene (11.3%)                                                                                                                                                          | [20] |
| Lomatium lucidum Jeps.                                                                                   | San Bernardino National Forest,<br>California  | Leaves and stems | limonene + $\beta$ -phellandrene (11.5%), decanal (15.7%), bornyl/isobornyl acetate (6.1%), dodecanal (9.4%), $\alpha$ -humulene                                                                                                                | [21] |
| Lomatium macrocarpum J.M. Coult. & Rose                                                                  | Six Rivers National Forest,<br>California      | Leaves and stems | (3Z)-hexenol (9.2%), (E)-β-caryophyllene<br>(12.6%), palmitic acid (9.0%), linoleic<br>acid (5.2%)                                                                                                                                              | [21] |
| Lomatium marginatum var. purpureum (Jeps.) Jeps.                                                         | Lake County, California                        | Leaves and stems | (3Z)-hexenol (10.3%), (Z)-β-lomatene (12.9%),<br>( <i>E</i> )-β-caryophyllene (9.3%)                                                                                                                                                            | [25] |
| Lomatium mohavense (J.M. Coult. & Rose) J.M. Coult. & Rose subsp. mohavense                              | Grant, California                              | Leaves and stems | limonene + $\beta$ -phellandrene (6.0%),<br><i>trans</i> - $\beta$ -elemene (17.8%), ( <i>E</i> )- $\beta$ -caryophyllene<br>(7.8%), germacrene D (10.8%),                                                                                      | [26] |
| Lomatium mohavense subsp. longilobum W.L. Theob.                                                         | Acton, California                              | Leaves and stems | bicyclogermacrene (6.2%)<br>(3Z)-hexenol (7.5%), limonene +<br>$\beta$ -phellandrene (6.5%), $\beta$ -sinensal (6.8%),<br><i>iso</i> - $\alpha$ -sinensal (19.3%), $\alpha$ -sinensal (5.4%),<br><i>iso</i> - $\alpha$ -sinensyl acetate (5.7%) | [26] |
| <i>Lomatium nevadense</i> (S. Watson) J.M. Coult. & Rose var. <i>parishii</i> (J.M. Coult. & Rose) Jeps. | Bishop, California                             | Leaves and stems | (E)- $\beta$ -ocimene (5.1%), (E)- $\beta$ -caryophyllene (10.3%), germacrene D (10.7%), bicyclogermacrene (7.0%),                                                                                                                              | [27] |
| Lomatium parryi (S. Watson) J.F. Macbr.                                                                  | Pine Valley Mountains, Utah                    | Aerial parts     | limonene + $\beta$ -phellandrene (12.8%), bornyl acetate (18.6%)                                                                                                                                                                                | [20] |
| Lomatium rigidum (M.E. Jones) Jeps.                                                                      | Eastern Sierra Nevada<br>Mountains, California | Leaves and stems | limonene + $\beta$ -phellandrene (9.1%), $\delta$ -cadinene (12.4%), $\tau$ -cadinol + $\tau$ -muurolol (9.0%), $\alpha$ -cadinol (16.4%), ( <i>Z</i> )-falcarinol (10.8%)                                                                      | [28] |
| Lomatium rigidum (M.E. Jones) Jeps.                                                                      | Bishop Canyon, California                      | Aerial parts     | $\alpha$ -pinene (6.9%), limonene + $\beta$ -phellandrene (28.6%), cryptone (5.6%), osthole (10.9%)                                                                                                                                             | [29] |
| <i>Lomatium scabrum</i> (J.M. Coult. & Rose) Mathias var. <i>tripinnatum</i> Goodrich                    | St. George, Utah                               | Aerial parts     | myrcene (8.2%), limonene + $\beta$ -phellandrene (26.0%), ( <i>Z</i> )- $\beta$ -ocimene (11.8%)                                                                                                                                                | [29] |
| <i>Lomatium torreyi</i> (J.M. Coult. & Rose) J.M.<br>Coult. & Rose                                       | Yosemite National Park,<br>California          | Aerial parts     | β-phellandrene (12.9%), (Z)-β-ocimene<br>(14.2%), (Z)-ligustilide (42.4%)                                                                                                                                                                       | [30] |
| <i>Lomatium utriculatum</i> (Nutt. ex Torr. & A. Gray) J.M. Coult. & Rose                                | Six Rivers National Forest,<br>California      | Leaves and stems | (Z)-ligustilide (19.6%), palmitic acid (15.3%)                                                                                                                                                                                                  | [21] |

## 2.1. Lomatium anomalum (L. triternatum Complex)

Three samples of *L. anomalum* were collected near Grangeville, western Idaho. Hydrodistillation gave colorless or pale yellow essential oils in yields of 1.57–1.68%. The gas chromatographic results are summarized in Table 2. The essential oils were dominated by sabinene (48.0–49.9%) and  $\alpha$ -pinene (21.9–37.6%).

| Table 2. Essential oil com | position (%) of <i>Lomatium</i> a | anomalum Jones ex J.M. 0 | Coult. & Rose. |
|----------------------------|-----------------------------------|--------------------------|----------------|
|----------------------------|-----------------------------------|--------------------------|----------------|

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                         | La#1 | La#2 | La#3 |
|--------------------|------------------|----------------------------------|------|------|------|
| 800                | 801              | Hexanal                          | tr   | tr   | tr   |
| 832                | 831              | Furfural                         | -    | -    | tr   |
| 850                | 849              | (2E)-Hexenal                     | 0.1  | -    | tr   |
| 853                | 853              | (3Z)-Hexenol                     | tr   | -    | tr   |
| 903                | 906              | Heptanal                         | -    | tr   | tr   |
| 926                | 927              | α-Thujene                        | 0.3  | 0.8  | 0.7  |
| 934                | 933              | α-Pinene                         | 37.6 | 21.9 | 23.6 |
| 950                | 950              | Camphene                         | 0.1  | 0.1  | 0.1  |
| 975                | 972              | Sabinene                         | 48.2 | 48.0 | 49.9 |
| 980                | 978              | β-Pinene                         | 2.2  | 3.2  | 3.7  |
| 990                | 989              | Myrcene                          | 0.3  | 0.9  | 1.4  |
| 992                | 990              | Dehydro-1,8-cineole              | tr   | tr   | tr   |
| 1005               | 1004             | p-Mentha-1(7),8-diene            | tr   | tr   | tr   |
| 1007               | 1007             | α-Phellandrene                   | tr   | tr   | tr   |
| 1010               | 1009             | δ-3-Carene                       | -    | tr   | tr   |
| 1017               | 1018             | α-Terpinene                      | 0.5  | 1.5  | 1.3  |
| 1025               | 1025             | <i>p</i> -Cymene                 | 0.3  | 0.8  | 0.4  |
| 1030               | 1030             | Limonene                         | 0.7  | 1.7  | 1.2  |
| 1031               | 1031             | β-Phellandrene                   | 0.9  | 1.8  | 2.0  |
| 1032               | 1032             | 1,8-Cineole                      | -    | -    | tr   |
| 1034               | 1034             | (Z)-β-Ocimene                    | tr   | tr   | tr   |
| 1043               | 1045             | Phenylacetaldehyde               | -    | tr   | tr   |
| 1045               | 1045             | $(E)$ - $\beta$ -Ocimene         | 0.1  | 0.6  | 0.7  |
| 1058               | 1058             | γ-Terpinene                      | 2.7  | 7.0  | 4.7  |
| 1070               | 1069             | <i>cis-</i> Sabinene hydrate     | 0.4  | 0.7  | 0.7  |
| 1072               | 1071             | Dehydromyrcenol                  | -    | -    | tr   |
| 1086               | 1086             | Terpinolene                      | 0.5  | 1.3  | 0.9  |
| 1091               | 1093             | <i>p</i> -Cymenene               | -    | tr   | tr   |
| 1097               | 1099             | 6-Camphenone                     | tr   | tr   | tr   |
| 1100               | 1101             | Linalool                         | 0.1  | tr   | 0.1  |
| 1101               | 1101             | trans-Sabinene hydrate           | 0.4  | 0.6  | 0.6  |
| 1105               | 1107             | Nonanal                          | -    | -    | tr   |
| 1107               | 1107             | 1-Octen-3-yl acetate             | -    | -    | tr   |
| 1113               | 1113             | <i>p</i> -Mentha-1,3,8-triene    | -    | 0.1  | tr   |
| 1114               | 1112             | (E)-2,4-Dimethylhepta-2,4-dienal | -    | -    | tr   |
| 1121               | 1122             | trans-p-Mentha-2,8-dien-1-ol     | -    | -    | tr   |
| 1125               | 1124             | cis-p-Menth-2-en-1-ol            | 0.2  | 0.3  | 0.3  |
| 1135               | 1135             | 2-Vinylanisole                   | -    | 0.1  | tr   |
| 1143               | 1142             | trans-p-Menth-2-en-1-ol          | 0.1  | 0.2  | 0.2  |
| 1146               | 1145             | trans-Verbenol                   | tr   | tr   | tr   |
| 1150               | 1152             | 1,4-Dimethyl-4-acetylcyclohexene | tr   | 0.1  | tr   |
| 1179               | 1179             | 2-Isopropenyl-5-methyl-4-hexenal | tr   | tr   | tr   |
| 1181               | 1180             | Terpinen-4-ol                    | 2.6  | 5.1  | 4.8  |
| 1187               | 1186             | <i>p</i> -Cymen-8-ol             | tr   | 0.1  | tr   |
| 1195               | 1195             | α-Terpineol                      | 0.2  | 0.2  | 0.2  |
| 1197               | 1196             | <i>cis</i> -Piperitol            | tr   | tr   | tr   |
| 1210               | 1209             | trans-Piperitol                  | tr   | tr   | tr   |
| 1224               | 1231             | trans-Chrysenthenyl acetate      | 0.1  | 0.2  | 0.1  |

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                       | La#1 | La#2 | La#3  |
|--------------------|------------------|--------------------------------|------|------|-------|
| 1240               | 1240             | Ascaridole                     | -    | -    | 0.1   |
| 1305               | 1306             | iso-Ascaridole                 | -    | -    | 0.1   |
| 1309               | 1309             | <i>p</i> -Vinylguaiacol        | tr   | tr   | tr    |
| 1351               | 1357             | Eugenol                        | 0.1  | -    | -     |
| 1376               | 1377             | α-Čopaene                      | tr   | tr   | tr    |
| 1384               | 1382             | β-Bourbonene                   | -    | tr   | tr    |
| 1390               | 1390             | <i>trans</i> -β-Elemene        | -    | tr   | tr    |
| 1400               | 1403             | Methyl eugenol                 | tr   | tr   | -     |
| 1411               | 1412             | Longifolene                    | tr   | 0.3  | 0.1   |
| 1420               | 1417             | $(E)$ - $\beta$ -Caryophyllene | 0.2  | 0.1  | 0.1   |
| 1431               | 1432             | γ-Elemene                      | tr   | tr   | 0.1   |
| 1433               | 1432             | <i>trans-</i> α-Bergamotene    | 0.1  | 0.1  | 0.1   |
| 1453               | 1452             | (E)-β-Farnesene                | -    | tr   | tr    |
| 1456               | 1454             | α-Humulene                     | tr   | tr   | tr    |
| 1481               | 1480             | Germacrene D                   | 0.2  | 0.2  | 0.3   |
| 1496               | 1497             | Bicyclogermacrene              | 0.1  | 0.3  | 0.2   |
| 1518               | 1518             | δ-Cadinene                     | tr   | tr   | tr    |
| 1559               | 1557             | Germacrene B                   | tr   | 0.1  | 0.1   |
| 1561               | 1560             | (E)-Nerolidol                  | 0.1  | 0.1  | tr    |
| 1577               | 1576             | Spathulenol                    | -    | tr   | tr    |
| 1603               | 1601             | Carotol                        | -    | 0.1  | -     |
| 1669               | 1669             | (2E,6Z)-Farnesol               | 0.1  | tr   | -     |
| 1728               | 1730             | (Z)-Ligustilide                | -    | 0.8  | 0.5   |
| 1 220              | 100/             | 2-Methyl-5-(1,2,2-             |      |      | 0.1   |
| 1779               | 1776             | trimethylcyclopentyl)phenol    | -    | -    | 0.1   |
| 1788               | 1790             | (E)-Ligustilide                | -    | tr   | tr    |
| 1842               | 1841             | Phytone                        | -    | tr   | tr    |
| 2149               | 2143             | Serratol                       | -    | 0.1  | -     |
| 2300               | 2300             | Tricosane                      | 0.1  | tr   | tr    |
| 2400               | 2400             | Tetracosane                    | -    | -    | 0.5   |
| 2500               | 2500             | Pentacosane                    | 0.1  | 0.1  | tr    |
| 2575               | 2595             | Selinidin                      | 0.3  | -    | -     |
| 2700               | 2700             | Heptacosane                    | 0.2  | 0.2  | 0.1   |
|                    |                  | Monoterpene hydrocarbons       | 94.3 | 89.9 | 90.6  |
|                    |                  | Oxygenated monoterpenoids      | 3.9  | 7.4  | 7.2   |
|                    |                  | Sesquiterpene hydrocarbons     | 0.6  | 1.0  | 0.9   |
|                    |                  | Oxygenated sesquiterpenoids    | 0.1  | 0.2  | 0.1   |
|                    |                  | Diterpenoids                   | 0.0  | 0.1  | 0.0   |
|                    |                  | Benzenoid aromatics            | 0.4  | 0.1  | 0.0   |
|                    |                  | Others                         | 0.5  | 1.0  | 1.1   |
|                    |                  | Total identified               | 99.9 | 99.7 | 100.0 |

Table 2. Cont.

 $RI_{calc}$  = retention index calculated with respect to a homologous series of *n*-alkanes on a ZB-5ms column.  $RI_{db}$  = reference retention index values obtained from the databases. La = *Lomatium* anomalum. tr = trace (<0.05%). - = not observed.

#### 2.2. Lomatium packardiae (L. triternatum Complex)

Four samples of *L. packardiae* were collected, two from the Arrowrock Reservoir area (Idaho) and two from the Midvale area (Idaho). The essential oil yields ranged from 1.04% to 1.92%. The essential oil compositions are summarized in Table 3. The major components in the essential oils of *L. packardiae* were limonene (48.6–72.2%), (Z)-ligustilide (12.3–19.1%), and  $\beta$ -phellandrene (4.4–6.2%).

| <b>RI</b> <sub>calc</sub> | RI <sub>db</sub> | Compounds                          | Lpack#1 | Lpack#2 | Lpack#3 | Lpack#4 |
|---------------------------|------------------|------------------------------------|---------|---------|---------|---------|
| 925                       | 925              | α-Thujene                          | tr      | tr      | 0.1     | 0.1     |
| 933                       | 932              | α-Pinene                           | 0.5     | 0.4     | 1.5     | 1.5     |
| 949                       | 950              | Camphene                           | tr      | tr      | tr      | tr      |
| 972                       | 971              | Sabinene                           | 0.1     | 0.1     | 2.3     | 0.4     |
| 977                       | 978              | β-Pinene                           | 1.6     | 0.6     | 2.1     | 2.3     |
| 989                       | 989              | Myrcene                            | 2.4     | 3.1     | 3.6     | 3.1     |
| 990                       | 990              | Dehydro-1,8-cineole                | -       | -       | tr      | tr      |
| 1005                      | 1004             | p-Mentha-1(7),8-diene              | 0.1     | 0.1     | tr      | 0.1     |
| 1007                      | 1006             | α-Phellandrene                     | 0.1     | 0.7     | 0.2     | 0.4     |
| 1009                      | 1008             | δ-3-Carene                         | tr      | tr      | tr      | tr      |
| 1017                      | 1018             | α-Terpinene                        | tr      | tr      | tr      | tr      |
| 1025                      | 1025             | <i>p-</i> Cymene                   | 0.1     | 0.1     | 0.1     | tr      |
| 1030                      | 1030             | Limonene                           | 72.2    | 65.0    | 48.6    | 57.8    |
| 1031                      | 1031             | β-Phellandrene                     | 4.4     | 6.2     | 5.1     | 5.4     |
| 1035                      | 1034             | (Z)-β-Ocimene                      | -       | -       | 0.1     | 0.1     |
| 1044                      | 1045             | Phenylacetaldehyde                 | tr      | tr      | tr      | tr      |
| 1045                      | 1045             | (E)-β-Ocimene                      | 0.1     | 0.1     | 2.1     | 1.7     |
| 1057                      | 1057             | γ-Terpinene                        | tr      | tr      | 0.3     | tr      |
| 1070                      | 1069             | cis-Sabinene hydrate               | tr      | tr      | tr      | tr      |
| 1071                      | 1071             | Dihydromyrcenol                    | tr      | tr      | -       | -       |
| 1085                      | 1086             | Terpinolene                        | tr      | tr      | tr      | tr      |
| 1090                      | 1090             | 6,7-Epoxymyrcene                   | tr      | tr      | -       | -       |
| 1098                      | 1098             | Perillene                          | tr      | tr      | -       | -       |
| 1099                      | 1101             | Linalool                           | tr      | tr      | tr      | tr      |
| 1101                      | 1101             | trans-Sabinene hydrate             | tr      | tr      | tr      | tr      |
| 1105                      | 1104             | Nonanal                            | tr      | tr      | tr      | tr      |
| 1122                      | 1122             | trans-p-Mentha-2,8-dien-1-ol       | 0.1     | tr      | tr      | tr      |
| 1125                      | 1124             | <i>cis-p</i> -Menth-2-en-1-ol      | tr      | 0.1     | 0.1     | 0.1     |
| 1127                      | 1127             | α-Campholenal                      | tr      | -       | -       | -       |
| 1131                      | 1131             | Limona ketone                      | tr      | tr      | -       | -       |
| 1133                      | 1134             | cis-Limonene oxide                 | 0.2     | tr      | tr      | tr      |
| 1136                      | 1137             | <i>cis-p</i> -Mentha-2,8-dien-1-ol | tr      | tr      | -       | -       |
| 1137                      | 1137             | trans-Limonene oxide               | 0.1     | tr      | tr      | tr      |
| 1142                      | 1142             | trans-p-Menth-2-en-1-ol            | tr      | tr      | tr      | tr      |
| 1145                      | 1146             | Oxophorone                         | -       | -       | 0.1     | tr      |
| 1156                      | 1156             | Pentylbenzene                      | tr      | tr      | -       | tr      |
| 1158                      | 1161             | Pentylcyclohexa-1,3-diene          | 0.1     | 0.2     | 0.1     | 0.2     |
| 1180                      | 1180             | Terpinen-4-ol                      | tr      | tr      | 0.2     | tr      |
| 1187                      | 1187             | Cryptone                           | 0.3     | 0.1     | tr      | tr      |
| 1195                      | 1195             | α-Terpineol                        | tr      | tr      | tr      | tr      |
| 1197                      | 1198             | <i>cis</i> -Piperitol              | -       | -       | tr      | tr      |
| 1203                      | 1202             | <i>cis</i> -Sabinol                | tr      | tr      | -       | -       |
| 1218                      | 1218             | trans-Carveol                      | tr      | tr      | -       | -       |
| 1242                      | 1242             | Cuminal                            | tr      | -       | -       | -       |
| 1243                      | 1246             | Carvone                            | tr      | tr      | -       | -       |
| 1265                      | 1265             | Dec-(2E)-enal                      | tr      | tr      | -       | -       |
| 1277                      | 1277             | Phellandral                        | tr      | tr      | -       | -       |
| 1286                      | 1286             | α-Terpinen-7-al                    | tr      | tr      | -       | -       |
| 1288                      | 1286             | trans-Sabinyl acetate              | -       | -       | 0.1     | -       |
| 1338                      | 1339             | 3-Oxo- <i>p</i> -menth-1-en-7-al   | tr      | tr      | -       | -       |
| 1378                      | 1380             | Daucene                            | tr      | tr      | 0.2     | 0.2     |
| 1388                      | 1390             | <i>trans</i> -β-Elemene            | -       | tr      | 0.1     | tr      |
| 1410                      | 1410             | Dodecanal                          | -       | -       | tr      | tr      |
| 1417                      | 1417             | (E)-β-Caryophyllene                | tr      | tr      | 0.1     | tr      |
| 1417                      | 1416             | β-Funebrene                        | -       | tr      | tr      | tr      |

**Table 3.** Essential oil composition (%) of *Lomatium packardiae* Cronguist.

|                  | Table 3. Cont.      |
|------------------|---------------------|
| RI <sub>db</sub> | Compounds           |
| 1430             | γ-Elemene           |
| 1433             | trans-α-Bergamotene |

| RI <sub>calc</sub> | RI <sub>db</sub> | Compounds                                     | Lpack#1 | Lpack#2 | Lpack#3 | Lpack#4 |
|--------------------|------------------|-----------------------------------------------|---------|---------|---------|---------|
| 1429               | 1430             | γ-Elemene                                     | tr      | tr      | 0.1     | tr      |
| 1433               | 1433             | <i>trans</i> -α-Bergamotene                   | -       | -       | tr      | tr      |
| 1452               | 1452             | (E)-β-Farnesene                               | 0.1     | 0.1     | 0.3     | 0.2     |
| 1454               | 1454             | α-Humulene                                    | -       | -       | tr      | tr      |
| 1472               | 1473             | Dauca-5,8-diene                               | -       | -       | 0.2     | -       |
| 1475               | 1475             | γ-Muurolene                                   | -       | -       | -       | 0.2     |
| 1480               | 1480             | Germacrene D                                  | 0.1     | 0.2     | 1.4     | 0.7     |
| 1494               | 1494             | α-Zingiberene                                 | tr      | 0.1     | 0.1     | 0.1     |
| 1495               | 1497             | Bicyclogermacrene                             | -       | -       | 0.3     | tr      |
| 1501               | 1504             | <i>iso</i> -Daucene                           | -       | -       | tr      | tr      |
| 1507               | 1508             | β-Bisabolene                                  | -       | -       | tr      | tr      |
| 1511               | 1512             | α-Alaskene                                    | -       | tr      | tr      | tr      |
| 1513               | 1512             | γ-Cadinene                                    | -       | -       | tr      | -       |
| 1518               | 1518             | δ-Cadinene                                    | -       | -       | tr      | tr      |
| 1523               | 1523             | β-Sesquiphellandrene                          | 0.5     | 1.0     | 1.1     | 0.9     |
| 1557               | 1557             | Germacrene B                                  | tr      | 0.1     | 0.1     | 0.1     |
| 1576               | 1574             | Germacra-1(10),5-dien-4β-ol                   | -       | -       | -       | tr      |
| 1577               | 1576             | Spathulenol                                   | tr      | -       | 0.1     | -       |
| 1581               | 1584             | 10-epi-Juneol                                 | tr      | tr      | tr      | tr      |
| 1582               | 1587             | Caryophyllene oxide                           | -       | -       | -       | -       |
| 1601               | 1601             | Carotol                                       | 2.2     | 0.2     | 7.0     | 7.2     |
| 1612               | 1615             | Zingiberenol                                  | tr      | tr      | tr      | tr      |
| 1613               | 1613             | Tetradecanal                                  | -       | tr      | tr      | tr      |
| 1649               | 1649             | 3-Butylphthalide                              | -       | -       | -       | 0.1     |
| 1655               | 1655             | α-Cadinol                                     | -       | -       | tr      | tr      |
| 1662               | 1664             | ar-Turmerone                                  | tr      | -       | 0.1     | -       |
| 1668               | 1669             | (3Z)-Butylidene phthalide                     | 0.6     | 0.3     | 0.1     | 0.2     |
| 1668               | 1668             | α-Turmerone                                   | -       | -       | 0.5     | -       |
| 1687               | 1687             | Himachal-4-en-1β-ol                           | -       | 0.1     | 0.1     | 0.1     |
| 1700               | 1699             | Curlone B (= $\beta$ -Turmerone)              | tr      | -       | 0.2     | -       |
| 1712               | 1712             | Senkyunolide (=Sedanenolide)                  | -       | -       | -       | 0.1     |
| 1712               | 1719             | (3E)-Butylidene phthalide                     | 0.2     | 0.2     | 0.2     | 0.1     |
| 1729               | 1730             | (Z)-Ligustilide                               | 12.3    | 18.0    | 19.1    | 15.4    |
| 1781               | 1776             | 2-Methyl-5-(1,2,2-trimethylcyclopentyl)phenol | -       | 0.1     | tr      | 0.1     |
| 1788               | 1790             | (E)-Ligustilide                               | 1.0     | 2.6     | 1.2     | 1.1     |
| 2038               | 2037             | (Z)-Falcarinol                                | -       | tr      | 0.1     | 0.2     |
| 2300               | 2300             | Tricosane                                     | tr      | tr      | tr      | tr      |
| 2400               | 2400             | Tetracosane                                   | tr      | tr      | tr      | tr      |
| 2500               | 2500             | Pentacosane                                   | 0.1     | 0.1     | 0.3     | 0.1     |
| 2600               | 2600             | Hexacosane                                    | -       | -       | tr      | tr      |
| 2700               | 2700             | Heptacosane                                   | tr      | tr      | 0.2     | tr      |
|                    |                  | Monoterpene hydrocarbons                      | 81.5    | 76.4    | 66.1    | 72.9    |
|                    |                  | Oxygenated monoterpenoids                     | 0.7     | 0.2     | 0.5     | 0.1     |
|                    |                  | Sesquiterpene hydrocarbons                    | 0.7     | 1.4     | 4.0     | 2.3     |
|                    |                  | Oxygenated sesquiterpenoids                   | 2.2     | 0.3     | 7.8     | 7.3     |
|                    |                  | Benzenoid aromatics                           | 14.1    | 21.2    | 20.5    | 16.9    |
|                    |                  | Others                                        | 0.1     | 0.3     | 0.7     | 0.5     |
|                    |                  | Total identified                              | 99.2    | 99.8    | 99.7    | 100.0   |

 $RI_{calc}$  = retention index calculated with respect to a homologous series of *n*-alkanes on a ZB-5ms column.  $RI_{db}$  = reference retention index values obtained from the databases. Lpack = Lomatium packardiae. tr = trace (<0.05%). - = not observed.

#### 2.3. Lomatium triternatum var. triternatum (L. triternatum Complex)

Three individual samples of L. triternatum triternatum were collected near Prairie, Idaho. The chemical compositions of the L. triternatum triternatum essential oils are summarized in Table 4. Although the three samples were collected from the same location on the same day, there was remarkable variation in the essential oil compositions. For example, monoterpene hydrocarbons ranged from a high of 62.2% in sample Ltt#1 to a low of 13.8% in sample Ltt#2, while oxygenated monoterpenoids were highest in Ltt#2 (39.1%) but lowest in Ltt#3 (2.8%). These are reflected in  $\beta$ -phellandrene concentrations (48.5% and 29.4% in Ltt#1 and Ltt#3, respectively, but only 1.7% in Ltt#2) and myrcene concentrations (12.7% and 14.1% in Ltt#1 and Ltt#3, respectively, but 2.9% in Ltt#2). On the other hand, the cryptone concentration was highest in Ltt#2 (17.9%) compared to either Ltt#1 or Ltt#3 (3.7% and 0.8%). It is not clear what effects may have resulted in these vast differences.

Table 4. Essential oil composition (%) of Lomatium triternatum (Pursh) J.M. Coult. & Rose var. triternatum.

| RI <sub>calc</sub> | RI <sub>db</sub> | Compounds                    | Ltt#1 | Ltt#2 | Ltt#3 |
|--------------------|------------------|------------------------------|-------|-------|-------|
| 925                | 925              | α-Thujene                    | 0.1   | 0.2   | 0.6   |
| 933                | 932              | α-Pinene                     | 0.6   | 5.7   | 9.1   |
| 949                | 950              | Camphene                     | tr    | 0.3   | 0.2   |
| 972                | 971              | Sabinene                     | 5.6   | 2.1   | 9.9   |
| 977                | 978              | β-Pinene                     | 0.5   | 10.6  | 11.9  |
| 989                | 989              | Myrcene                      | 12.7  | 2.9   | 14.1  |
| 990                | 990              | Dehydro-1,8-cineole          | 0.1   | 0.4   | 0.2   |
| 1005               | 1004             | p-Mentha-1(7),8-diene        | 0.4   | 0.5   | 0.2   |
| 1007               | 1006             | α-Phellandrene               | 0.2   | -     | 0.4   |
| 1009               | 1008             | δ-3-Carene                   | 0.1   | -     | tr    |
| 1017               | 1018             | α-Terpinene                  | -     | -     | 0.1   |
| 1019               | 1024             | 2-Cyclohexene-1,4-dione      | -     | 0.6   | -     |
| 1025               | 1025             | <i>p</i> -Cymene             | 2.1   | 4.3   | 0.7   |
| 1030               | 1030             | Limonene                     | 1.6   | 4.7   | 1.1   |
| 1031               | 1031             | β-Phellandrene               | 48.5  | 1.7   | 29.4  |
| 1035               | 1034             | (Z)-β-Ocimene                | 0.5   | -     | 0.5   |
| 1045               | 1045             | $(E)$ - $\beta$ -Ocimene     | 8.2   | -     | 9.2   |
| 1057               | 1057             | $\gamma$ -Terpinene          | 0.3   | -     | 0.3   |
| 1070               | 1069             | <i>cis</i> -Sabinene hydrate | 0.1   | 0.3   | 0.1   |
| 1071               | 1071             | Dihydromyrcenol              | 0.2   | 0.6   | tr    |
| 1085               | 1086             | Terpinolene                  | -     | -     | 0.1   |
| 1090               | 1090             | 6,7-Epoxymyrcene             | 0.1   | 0.4   | 0.1   |
| 1091               | 1091             | Rosefuran                    | 0.1   | -     | -     |
| 1095               | 1097             | $\alpha$ -Pinene oxide       | 0.1   | -     | tr    |
| 1098               | 1098             | Perillene                    | tr    | 0.2   | -     |
| 1099               | 1101             | Linalool                     | 0.3   | 1.3   | 0.1   |
| 1101               | 1101             | trans-Sabinene hydrate       | 0.1   | 0.1   | 0.1   |
| 1105               | 1104             | Nonanal                      | tr    | 0.2   | tr    |
| 1107               | 1109             | 1-Octen-3-yl acetate         | 0.1   | 0.2   | -     |
| 1125               | 1124             | cis-p-Menth-2-en-1-ol        | 0.2   | 0.8   | 0.1   |
| 1127               | 1127             | α-Campholenal                | -     | 0.3   | -     |
| 1129               | 1129             | (Z)-Myroxide                 | tr    | -     | tr    |
| 1131               | 1131             | Limona ketone                | -     | -     | -     |
| 1133               | 1134             | cis-Limonene oxide           | -     | 0.4   | -     |
| 1138               | 1138             | Benzeneacetonitrile          | 0.1   | -     | tr    |
| 1139               | 1139             | (E)-Myroxide                 | 0.2   | -     | 0.1   |
| 1139               | 1139             | Nopinone                     | -     | 0.5   | -     |
| 1141               | 1141             | trans-Pinocarveol            | -     | 0.6   | -     |
| 1142               | 1142             | trans-p-Menth-2-en-1-ol      | 0.1   | 0.5   | 0.1   |
| 1145               | 1146             | Oxophorone                   | 0.1   | -     | tr    |
| 1146               | 1146             | trans-Verbenol               | -     | 0.2   | tr    |
| 1162               | 1164             | Pinocarvone                  | -     | 0.6   | -     |
| 1169               | 1169             | Rosefuran epoxide            | 0.1   | -     | -     |
| 1180               | 1180             | Terpinen-4-ol                | 0.5   | 0.8   | 0.7   |
| 1187               | 1187             | Cryptone                     | 3.7   | 17.9  | 0.8   |
| 1192               | 1192             | Methyl salicylate            | 0.1   | -     | -     |
| 1195               | 1195             | α-Terpineol                  | 0.2   | 0.6   | 0.2   |
| 1196               | 1196             | Myrtenal                     | -     | 0.8   | -     |
| 1197               | 1195             | <i>p</i> -Menth-3-en-7-al    | 0.2   | 0.8   | 0.1   |
| 1197               | 1198             | <i>cis</i> -Piperitol        | -     | -     | -     |

#### Table 4. Cont.

| RI <sub>calc</sub> | RI <sub>db</sub> | Compounds                          | Ltt#1       | Ltt#2       | Ltt#3      |
|--------------------|------------------|------------------------------------|-------------|-------------|------------|
| 1203               | 1202             | cis-Sabinol                        | 0.1         | -           | 0.1        |
| 1223               | 1223             | <i>m</i> -Cumenol                  | -           | 0.5         | -          |
| 1242               | 1242             | Cuminal                            | 0.3         | 2.8         | 0.1        |
| 1243               | 1246             | Carvone                            | -           | 0.3         | -          |
| 1254               | 1254             | Piperitone                         | 0.1         | 0.4         | -          |
| 1264               | 1258             | <i>trans</i> -Piperitone epoxide   | 0.2         | 0.5         | -          |
| 1265               | 1265             | Dec-(2E)-enal                      | -           | 0.5         | -          |
| 1286               | 1286             | α-Terpinen-7-al                    | 0.1         | 0.2         | tr         |
| 1291               | 1291             | p-Cymen-7-ol                       | 0.3         | 2.4         | 0.1        |
| 1322               | 1318             | 4-Hydroxycryptone                  | _           | 1.5         | -          |
| 1331               | 1330             | Bicvcloelemene                     | -           | -           | 0.1        |
| 1338               | 1339             | 3-Oxo- <i>v</i> -menth-1-en-7-al   | 0.4         | 2.4         | 0.1        |
| 1388               | 1390             | <i>trans</i> -β-Elemene            | -           | -           | 0.1        |
| 1417               | 1417             | $(E)$ - $\beta$ -Carvophyllene     | 0.1         | -           | 1.1        |
| 1442               |                  | Unidentified <sup>a</sup>          | 0.5         | 3.5         | 0.1        |
| 1448               |                  | Unidentified <sup>b</sup>          | -           | 1.2         | -          |
| 1454               | 1454             | α-Humulene                         | _           | -           | 0.1        |
| 1475               | 1475             | v-Muurolene                        | 0.2         | _           | 0.1        |
| 1480               | 1480             | Germacrene D                       | 3.0         | _           | 2.5        |
| 1491               |                  | Unidentified <sup>c</sup>          | 0.5         | 25          | 0.1        |
| 1495               | 1497             | Bicyclogermacrene                  | -           | -           | 0.1        |
| 1507               | 1508             | B-Bisabolene                       | 0.1         | _           | -          |
| 1513               | 1512             | y-Cadinene                         | 0.1         | _           | tr         |
| 1518               | 1512             | δ-Cadinene                         | 0.1         | _           | 0.1        |
| 1576               | 1574             | Cermacra-1(10) 5-dien-1B-ol        | 0.2         | _           | 0.1        |
| 1570               | 1576             | Spathulenol                        | 0.0         | 63          | 0.2        |
| 1582               | 1587             | Carvophyllene oxide                | _           | 12          | 0.0        |
| 1632               | 1630             | Carvophylla-4(12) 8(13)-dien-5α-ol | _           | -           | 0.1        |
| 1639               | 1644             | allo-Aromadendrene enovide         | 03          | _           | 0.1        |
| 1642               | 1642             | π-Cadinol                          | 0.0         | _           | 0.1<br>tr  |
| 1643               | 1644             | τ-Muurolol                         | _           | _           | 0.1        |
| 1649               | 1649             | 3-Butylphthalide                   | _           | 0.4         | -          |
| 1655               | 1655             | α-Cadinol                          | 03          | 0.1         | 0.2        |
| 1662               | 1664             | ar-Turmerone                       | 0.2         | 0.4         | 0.1        |
| 1693               | 1686             | Shyohunol                          | 0.2         | -           | -          |
| 1712               | 1712             | Senkyunolide (=Sedanenolide)       | 0.1         | _           | 0.2        |
| 1806               | 1807             | Tetradecyl acetate                 | -           | _           | 0.1        |
| 1872               | 1875             | Oplopaponyl acetate                | 0.1         | 0.5         | 0.1        |
| 1936               | 1933             | Beverene                           | 0.1         | 0.5         | 0.1        |
| 2038               | 2037             | (Z)-Falcarinol                     | 0.2         | -           | 0.1        |
| 2300               | 2300             | Tricosane                          | -           | _           | 0.1        |
| 2400               | 2400             | Tetracosane                        | _           | _           | 0.1        |
| 2500               | 2500             | Pentacosane                        | 0.1         | 03          | 0.2        |
| 2500               | 2500             | Aurantene                          | 1.0         | 13          | 0.2        |
| 2700               | 2010             | Hentacosano                        | 1.0         | 1.5         | 0.7        |
| 2700               | 2700             | Monotorpopo hydrocarbons           | 0.5<br>81.6 | 33.0        | 87.9       |
|                    |                  | Ovugenated monotornenoide          | 80          | 20.1        | 28         |
|                    |                  | Secultarpone hydrocarbons          | 0.U<br>3.6  | 0.0         | ∠.0<br>1 Q |
|                    |                  | Ovugonated sosquiternonoids        | 3.0<br>1 2  | 0.0         | 4.7<br>11  |
|                    |                  | Ditemonoide                        | 1.3         | 0.0         | 1.1        |
|                    |                  | Banzanoid aromatica                | 0.2         | 0.7         | 0.1        |
|                    |                  | Others                             | 1.1         | 1./         | 0.9        |
|                    |                  | Omers<br>Total identified          | 1.0         | 2.3<br>8E ( | 2.0        |
|                    |                  | iotal identified                   | 96.8        | 03.6        | 99./       |

 $\begin{array}{l} {\rm RI}_{\rm calc} = {\rm retention\ index\ calculated\ with\ respect\ to\ a\ homologous\ series\ of\ n-alkanes\ on\ a\ ZB-5ms\ column.} \\ {\rm RI}_{\rm db} = {\rm reference\ retention\ index\ values\ obtained\ from\ the\ databases.}\ Ltt = Lomatium\ triternatum\ var.\ va$ 

Multivariate analyses were performed using the essential oil compositions of *L. anomalum*, *L. packardiae*, and *L. triternatum*, three members of the *L. triternatum* complex, in order to visualize the chemical relationships between the three taxa. A hierarchical cluster analysis (HCA, Figure 8) confirms the large degree of dissimilarity between *L. anomalum*, *L. packardiae*, and *L. triternatum*. The HCA clearly separates the three taxa, the limonene-rich *L. packardiae*, the sabinene/ $\alpha$ -pinene *L. anomalum*, and the *L. triternatum* group. The *L. triternatum* group is further subdivided in a  $\beta$ -phellandrene/myrcene type and a cryptone/ $\beta$ -pinene type. A principal component analysis (PCA, Figure 9) corroborates the groupings and their chemical correlations.



**Figure 8.** Dendrogram obtained by hierarchical cluster analysis (HCA) of essential oil compositions (major essential oil components) of members of the *Lomatium triternatum* complex.



**Figure 9.** The bidimensional plot of the first two components (F1 and F2) from principal component analysis (PCA) of members of the *Lomatium triternatum* complex, based on major components in their essential oils. La = *Lomatium anomalum*, Lpack = *Lomatium packardiae*, Ltt = *Lomatium triternatum* var. *triternatum*.

#### 2.4. Lomatium dissectum (Lomatium dissectum Complex)

Five different individual plants were collected near Grangeville, Idaho. Hydrodistillation of the samples gave colorless essential oils in yields ranging from 1.94% to 2.74%. The chemical compositions of the essential oils are compiled in Table 5. Interestingly, terpenoids were found in very small quantities in *L. dissectum* essential oils. Fatty-acid-derived compounds, however, were the major components, including octyl acetate (37.8–48.4%), decyl acetate (33.9–45.8%), and decanol (9.8–18.4%). These results show some qualitative similarities to that reported by Bairamian and co-workers [22] on a sample from northern California. However, quantitatively, the samples are very different. The California sample had 5.3% octyl acetate, 3.2% decyl acetate, and 1.2% decanol, but a large concentration of palmitic acid (15.3%), which was found in only trace quantities in the samples from Idaho.

| RI <sub>calc</sub> | RI <sub>db</sub> | Compounds                               | Ld#1       | Ld#2     | Ld#3      | Ld#4      | Ld#5        |
|--------------------|------------------|-----------------------------------------|------------|----------|-----------|-----------|-------------|
| 783                | 782              | Prenol                                  | 0.1        | tr       | 0.1       | 0.1       | 0.1         |
| 933                | 933              | α-Pinene                                | tr         | tr       | tr        | 0.1       | tr          |
| 950                | 950              | Camphene                                | tr         | tr       | tr        | tr        | tr          |
| 973                | 972              | Sabinene                                | tr         | tr       | tr        | tr        | tr          |
| 979                | 978              | β-Pinene                                | tr         | tr       | tr        | 0.3       | tr          |
| 990                | 991              | Myrcene                                 | tr         | tr       | tr        | tr        | tr          |
| 992                | 990              | Dehvdro-1,8-cineole                     | tr         | tr       | tr        | tr        | tr          |
| 1004               | 1006             | Octanal                                 | tr         | tr       | tr        | tr        | tr          |
| 1005               | 1005             | (3Z)-Hexenyl acetate                    | tr         | tr       | tr        | tr        | tr          |
| 1007               | 1006             | α-Phellandrene                          | tr         | tr       | -         | tr        | tr          |
| 1012               | 1012             | Hexyl acetate                           | tr         | tr       | 0.1       | 0.1       | 0.1         |
| 1025               | 1025             | <i>p</i> -Cymene                        | tr         | tr       | tr        | tr        | tr          |
| 1029               | 1030             | Limonene                                | tr         | tr       | tr        | tr        | tr          |
| 1031               | 1031             | β-Phellandrene                          | tr         | tr       | tr        | tr        | tr          |
| 1033               | 1032             | 1,8-Cineole                             | tr         | tr       | tr        | tr        | tr          |
| 1035               | 1034             | (Z)-β-Ocimene                           | -          | -        | tr        | -         | tr          |
| 1044               | 1045             | Phenylacetaldehyde                      | tr         | tr       | tr        | tr        | tr          |
| 1046               | 1046             | $(E)$ - $\beta$ -Ocimene                | tr         | tr       | tr        | tr        | tr          |
| 1058               | 1057             | γ-Terpinene                             | tr         | tr       | -         | tr        | -           |
| 1070               | 1069             | 1-Octanol                               | 0.6        | 0.3      | 1.1       | 0.8       | 0.6         |
| 1086               | 1087             | Terpinolene                             | -          | -        | -         | -         | tr          |
| 1092               | 1093             | 2-Nonanone                              | -          | -        | -         | tr        | -           |
| 1100               | 1101             | Linalool                                | tr         | tr       | tr        | tr        | tr          |
| 1105               | 1107             | Nonanal                                 | tr         | tr       | tr        | tr        | tr          |
| 1108               | 1107             | 1-Octen-3-yl acetate                    | tr         | tr       | -         | tr        | tr          |
| 1124               | 1123             | Methyl octanoate                        | tr         | tr       | tr        | tr        | tr          |
| 1143               | 1142             | Epoxyterpinolene                        | tr         | -        | -         | -         | tr          |
| 1151               | 1152             | 1,4-Dimethyl-4-acetylcyclohexene        | tr         | -        | -         | -         | tr          |
| 1152               | 1152             | Nerol oxide                             | tr         | -        | -         | -         | -           |
| 1158               | 1160             | Pentylcyclohexa-1,3-diene               | -          | tr       | -         | -         | -           |
| 1179               | 1179             | 2-isopropenyl-5-methyl-4-hexenal        | tr         | -        | -         | -         | tr          |
| 1181               | 1180             | Terpinen-4-ol                           | tr         | tr       | -         | -         | -           |
| 1189               | 1189             | <i>p</i> -Cymen-8-ol                    | -          | tr       | -         | -         | -           |
| 1196               | 1195             | α-Terpineol                             | tr         | tr       | tr        | tr        | tr          |
| 1200               | 1202             | (22)-Octenyl acetate                    | tr         | -        | tr        | -         | -           |
| 1207               | 1208             | Decanal                                 | 0.7        | 0.3      | 0.4       | 0.2       | 0.3         |
| 1211               | 1211             | Octyl acetate                           | 41.1       | 43.3     | 48.4      | 42.4      | 37.8        |
| 1216               | 1217             | Coumaran                                | -          | tr       | tr        | tr        | tr          |
| 1225               | 1231             | trans-Chrysanthenyl acetate             | tr         | tr       | -         | -         | tr          |
| 1255               | 1257             | 2-Phenethyl acetate                     | -          | -        | -         | -         | tr          |
| 1263               | 1263             | (2E)-Decenal                            | -          | -        | -         | tr        | tr          |
| 1273               | 1271             | I-Decanol                               | 18.4       | 12.2     | 14.5      | 9.8       | 13.3        |
| 1284               | 1284             | Lavandulyi acetate                      | tr         | -        | -         | -         | -           |
| 1293               | 1293             | 2-Undecanone                            | -          | -        | -         | tr        | tr<br>0.1   |
| 1310               | 1309             | 1-INONYI acetate                        | tr         | tr       | tr        | tr        | 0.1         |
| 1312               | 1310             | Namil a cotato                          | -          | -        | -         | -         | tr          |
| 1339               | 1301             | Desensis asid                           | 0.1        | u        | ur        | -         | ur          |
| 1303               | 1307             |                                         | ιr         | -        | -         | -         | -           |
| 1370               | 1373             | $(\Gamma) \ \ell$ Democrane             | -          | -        | ur<br>tu  | -         | -           |
| 1379               | 1379             | (E)-p-Damascenone                       | -          | - 0.1    | ur<br>tr  | -<br>+ n  | -           |
| 1388               | 1304             | (3Z) Decen 1 vl acetate                 | u<br>tr    | 0.1      | ti<br>tr  | ll<br>tr  | 0.1         |
| 1,000              | 1300             | Decyl acetate                           | 11<br>27 0 | 12 O     | 22.0      | 12 D      | 0.1<br>15 Q |
| 1409               | 1400             | $\Delta \cos 2 \frac{7(14)}{100}$ diopo | 57.2       | 42.0     | 55.9      | 43.2      | 43.0        |
| 1414<br>1/10       | 1414             | $(F)$ - $\beta$ - $(2\pi v o phyllop o$ | - 0.1      | -        | - 0.1     | 0.1       | - 0.1       |
| 1417               | 1/70             | B-Duprezianene                          | -          | -        | -         | 0.1<br>tr | -           |
| 1427               | 1420             | F $F$ $F$ $F$ $F$ $F$ $F$ $F$ $F$ $F$   | -          | -        | -         | u<br>tr   | -           |
| 1456               | 1454             | α-Humulene                              | -<br>tr    | -        | -<br>tr   | u<br>tr   | -<br>tr     |
| 1450               | 1404             | 1-Dodecanol                             | 12         | -<br>1 0 | u<br>1 () | 07        | 13          |
| 1488               | 1489             | ß-Selinene                              | -          | -        | -         | 0.7<br>tr | -           |
| 00+1               | 1-109            | p centiene                              | -          | -        | -         | L         | -           |

 Table 5. Essential oil compositions (%) of Lomatium dissectum (Nutt.) Mathias & Constance.

| RI <sub>calc</sub> | RI <sub>db</sub> | Compounds                     | Ld#1  | Ld#2  | Ld#3  | Ld#4  | Ld#5  |
|--------------------|------------------|-------------------------------|-------|-------|-------|-------|-------|
| 1490               | 1489             | $(Z,E)$ - $\alpha$ -Farnesene | -     | tr    | tr    | -     | tr    |
| 1494               | 1494             | 2-Tridecanone                 | -     | -     | -     | tr    | tr    |
| 1495               | 1497             | α-Selinene                    | -     | -     | -     | tr    | -     |
| 1504               | 1504             | $(E,E)$ - $\alpha$ -Farnesene | -     | tr    | tr    | tr    | tr    |
| 1508               | 1507             | 1-Pentadecene                 | tr    | tr    | -     | -     | tr    |
| 1511               | 1512             | α-Alaskene                    | -     | tr    | -     | tr    | -     |
| 1518               | 1518             | δ-Cadinene                    | -     | -     | tr    | -     | -     |
| 1523               | 1523             | β-Sesquiphellandrene          | -     | tr    | -     | tr    | -     |
| 1529               | 1528             | Kessane                       | -     | tr    | -     | -     | -     |
| 1560               | 1561             | (E)-Nerolidol                 | tr    | tr    | tr    | tr    | tr    |
| 1582               | 1582             | Octyl hexanoate               | tr    | tr    | tr    | 0.1   | tr    |
| 1602               | 1601             | Carotol                       | -     | tr    | tr    | -     | -     |
| 1608               | 1607             | 1-Dodecyl acetate             | 0.3   | 0.3   | 0.2   | 0.4   | 0.4   |
| 1655               | 1655             | α-Cadinol                     | -     | -     | tr    | tr    | -     |
| 1685               | 1686             | <i>epi-α-</i> Bisabolol       | -     | -     | -     | tr    | -     |
| 1704               | 1699             | β-Cedr-8-en-15-ol             | -     | -     | -     | 1.5   | -     |
| 1720               | 1722             | 3-Isobutylidene phthalide     | -     | tr    | tr    | tr    | -     |
| 1727               | 1730             | (Z)-Ligustilide               | -     | 0.1   | tr    | -     | tr    |
| 1777               | 1779             | Octyl octanoate               | tr    | tr    | tr    | 0.1   | tr    |
| 1779               | 1780             | (Z)-Nerolidyl isobutyrate     | tr    | tr    | -     | -     | -     |
| 1958               | 1958             | Palmitic acid                 | tr    | -     | tr    | -     | -     |
| 1975               | 1978             | Decyl octanoate               | -     | tr    | tr    | tr    | tr    |
| 2046               | 2050             | Bergaptene                    | tr    | tr    | tr    | tr    | tr    |
| 2148               | 2149             | Incensyl acetate              | tr    | tr    | tr    | tr    | -     |
| 2198               | 2192             | Geranylgeraniol               | tr    | -     | -     | -     | -     |
| 2301               | 2300             | Tricosane                     | tr    | tr    | tr    | tr    | tr    |
| 2501               | 2500             | Pentacosane                   | tr    | tr    | tr    | tr    | tr    |
| 2700               | 2700             | Heptacosane                   | tr    | tr    | tr    | tr    | tr    |
|                    |                  | Isoprenoids                   | 0.2   | 0.0   | 0.2   | 2.1   | 0.2   |
|                    |                  | Benzenoid aromatics           | trace | 0.1   | trace | trace | trace |
|                    |                  | Fatty acid derivatives        | 99.6  | 99.7  | 99.7  | 97.8  | 99.6  |
|                    |                  | Others                        | 0.0   | trace | 0.0   | 0.0   | 0.0   |
|                    |                  | Total identified              | 99.8  | 99.7  | 99.8  | 99.9  | 99.8  |

 $RI_{calc}$  = retention index calculated with respect to a homologous series of *n*-alkanes on a ZB-5ms column.  $RI_{db}$  = reference retention index values obtained from the databases. Ld = *Lomatium dissectum*. tr = trace (<0.05%). - = not observed.

## 2.5. Lomatium multifidum (Lomatium dissectum Complex)

A total of 12 samples of *L. multifidum* were collected from locations in eastern Oregon and western Idaho. The essential oils obtained were colorless to yellow with yields ranging from 1.60% to 6.15%. The chemical compositions of the *L. multifidum* essential oils are shown in Table 6. A total of 206 compounds were identified in the essential oils of *L. multifidum*, which accounted for 87.9% to 99.3% of the total compositions. There was some variation in the compositions of the essential oils. The major components were myrcene (12.5–54.1%), (*E*)- $\beta$ -ocimene (0.3–37.4%), limonene (0.7–14.0%),  $\alpha$ -bisabolol (0.0–26.3%), and  $\beta$ -phellandrene (trace-21.3%). In contrast, a sample of *L. multifidum* (reported as *Lomatium dissectum* var. *multifidum*) from southern California showed 6.0% myrcene, 1.0% (*E*)- $\beta$ -ocimene, 3.3% limonene +  $\beta$ -phellandrene, and 0.1%  $\alpha$ -bisabolol [22].

#### Table 5. Cont.

| <b>RI</b> <sub>calc</sub> | RI <sub>db</sub> | Compound                                  | Lm#1<br>(OR) | Lm#2<br>(OR) | Lm#3<br>(OR) | Lm#4<br>(OR) | Lm#5<br>(OR) | Lm#6<br>(OR) | Lm#7<br>(ID) | Lm#8<br>(ID) | Lm#9<br>(ID) | Lm#10<br>(OR) | Lm#11<br>(OR) | Lm#12<br>(OR) |
|---------------------------|------------------|-------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|
| 781                       | 782              | 3-Methylbut-2-en-1-ol                     | -            | -            | 1.7          | 1.4          | 1.7          | -            | -            | -            | -            | 2.0           | 2.6           | 2.2           |
| 790                       | 790              | 3-Methyl-2-butenal                        | -            | -            | 0.2          | 0.1          | -            | -            | -            | -            | -            | -             | -             | 0.2           |
| 801                       | 802              | Hexanal                                   | -            | -            | -            | -            | -            | -            | -            | -            | -            | tr            | 0.1           | 0.1           |
| 850                       | 850              | (2E)-Hexenal                              | 0.3          | 0.3          | 0.2          | 0.2          | -            | -            | -            | -            | -            | 0.1           | 0.8           | 0.4           |
| 852                       | 853              | (3Z)-Hexenol                              | -            | -            | -            | -            | -            | -            | -            | -            | -            | -             | 0.1           | -             |
| 903                       | 905              | Heptanal                                  | -            | -            | 0.1          | 0.2          | -            | 0.1          | 0.3          | tr           | 0.1          | -             | 0.1           | 0.1           |
| 920                       | 921              | Hashishene                                | tr           | 0.1          | 0.3          | 0.2          | 0.1          | 0.1          | 0.1          | tr           | tr           | 0.1           | 0.1           | 0.2           |
| 922                       | 923              | Tricyclene                                | tr           | tr           | 0.1          | tr           | -            | -            | -            | -            | -            | tr            | tr            | tr            |
| 933                       | 933              | α-Pinene                                  | 0.6          | 0.3          | 0.3          | 0.2          | 0.4          | -            | tr           | 0.1          | 0.3          | 0.3           | 1.2           | 1.4           |
| 947                       | 948              | α-Fenchene                                | tr            | tr            | 0.1           |
| 949                       | 950              | Camphene                                  | 4.2          | 1.7          | 4.8          | 2.0          | 0.9          | 0.4          | tr           | 0.5          | 0.5          | 0.5           | 3.7           | 2.5           |
| 952                       | 955              | Propylbenzene                             | -            | 0.1          | 1.0          | 0.8          | 0.5          | -            | 3.5          | tr           | -            | -             | 0.3           | 0.4           |
| 965                       | 963              | 2-Methyl-(3E)-octen-5-yne                 | 0.1          | 0.3          | 0.6          | 0.2          | 0.1          | 7.6          | 6.9          | 5.5          | 7.8          | tr            | -             | 0.1           |
| 972                       | 972              | Sabinene                                  | -            | -            | -            | -            | -            | -            | -            | -            | -            | 0.1           | 0.4           | 0.1           |
| 975                       | 981              | α-Mvrcene                                 | -            | 0.1          | -            | -            | -            | tr           | -            | -            | -            | _             | -             | _             |
| 978                       | 978              | β-Pinene                                  | -            | _            | -            | -            | -            | -            | -            | -            | -            | 0.1           | 0.1           | 0.4           |
| 989                       | 991              | β-Mvrcene                                 | 46.7         | 54.1         | 38.9         | 31.2         | 12.5         | 37.5         | 33.2         | 18.2         | 23.8         | 12.9          | 21.1          | 38.0          |
| 991                       | 992              | 1,5,5-Trimethyl-3-methylene-1-cyclohexene | -            | 0.1          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 991                       | 990              | Dehydro-1,8-cineole                       | -            | -            | -            | -            | -            | -            | -            | -            | -            | -             | 0.2           | -             |
| 992                       | 986              | cis-m-Mentha-2,8-diene                    | -            | -            | -            | -            | -            | 0.1          | -            | -            | -            | -             | -             | -             |
| 1004                      | 1004             | <i>v</i> -Mentha-1(7).8-diene             | -            | -            | -            | -            | -            | -            | -            | -            | -            | 0.1           | 0.2           | -             |
| 1007                      | 1007             | α-Phellandrene                            | -            | -            | -            | tr           | 0.3          | -            | -            | -            | -            | 1.0           | tr            | -             |
| 1024                      | 1025             | <i>p</i> -Cymene                          | 0.7          | 1.0          | 1.1          | 0.3          | 14.8         | 0.2          | 0.1          | 0.2          | 0.8          | 1.6           | 2.8           | 0.5           |
| 1029                      | 1030             | Limonene                                  | 3.3          | 2.8          | 4.5          | 1.8          | 8.8          | 1.7          | 0.7          | 5.2          | 14.0         | 1.3           | 3.8           | 2.8           |
| 1030                      | 1031             | β-Phellandrene                            | 0.3          | 0.2          | 0.1          | 2.5          | 4.1          | 0.1          | 0.1          | tr           | 0.1          | 19.6          | 21.3          | 0.2           |
| 1032                      | 1032             | 1,8-Cineole                               | -            | -            | -            | -            | -            | -            | -            | -            | -            | 0.1           | tr            | tr            |
| 1034                      | 1033             | Benzyl alcohol                            | -            | -            | -            | -            | -            | 0.1          | -            | -            | -            | -             | -             | -             |
| 1034                      | 1034             | (Z)-β-Ocimene                             | 2.2          | 0.1          | 2.2          | 2.5          | 4.0          | 0.3          | 1.5          | 0.8          | 0.4          | 5.7           | 2.1           | 3.5           |
| 1044                      | 1045             | Phenylacetaldehyde                        | -            | -            | 0.1          | -            | 0.1          | -            | -            | tr           | -            | 0.1           | 0.1           | tr            |
| 1045                      | 1045             | (E)- $\beta$ -Ocimene                     | 24.8         | 0.3          | 7.0          | 10.5         | 14.1         | 3.5          | 17.3         | 8.1          | 4.6          | 37.4          | 9.4           | 23.7          |
| 1051                      | 1051             | 2,3,6-Trimethylhepta-1,5-diene            | -            | -            | 0.1          | -            | -            | -            | -            | -            | -            | -             | tr            | tr            |
| 1057                      | 1057             | γ-Terpinene                               | 0.4          | 0.1          | 0.1          | 0.1          | 13.1         | -            | -            | 0.1          | 0.2          | 3.8           | 0.2           | -             |
| 1062                      | 1073             | <i>p</i> -Mentha-3,8-diene                | -            | -            | 0.2          | 0.1          | -            | 0.2          | 0.1          | 0.2          | 0.4          | -             | -             | -             |
| 1086                      | 1086             | Terpinolene                               | 0.5          | 0.1          | 0.1          | 0.1          | 6.5          | 0.1          | 0.1          | 1.5          | 3.8          | 0.1           | 0.1           | 0.1           |
| 1090                      | 1090             | 6,7-Epoxymyrcene                          | 0.1          | 0.7          | 0.5          | 0.1          | -            | 0.3          | 0.1          | -            | -            | -             | 0.2           | 0.2           |
| 1091                      | 1091             | <i>p</i> -Cymenene                        | -            | -            | -            | -            | -            | -            | -            | 0.1          | 0.2          | -             | -             | -             |
| 1091                      | 1091             | Rosefuran                                 | 0.1          | -            | 0.4          | 0.2          | -            | 0.1          | 0.1          | 0.1          | 0.1          | -             | 0.2           | 0.4           |
| 1096                      | 1097             | α-Pinene oxide                            | 0.1          | -            | 0.5          | 0.3          | -            | 0.2          | 0.1          | 0.1          | tr           | tr            | 0.2           | 0.5           |
| 1099                      | 1098             | Perillene                                 | tr           | 0.5          | 0.3          | 0.1          | -            | 0.2          | tr           | tr           | -            | -             | -             | -             |
| 1100                      | 1101             | Linalool                                  | 0.1          | 0.1          | 0.4          | 0.1          | 0.2          | 0.2          | 0.2          | 0.2          | 0.1          | 0.1           | 0.3           | 0.2           |
| 1104                      | 1102             | 6-Methylhepta-3.5-dien-2-one              | -            | _            | 0.1          | _            | _            | _            | _            | _            | _            | -             | _             | 0.2           |
| 1121                      | 1119             | Myrcenol                                  | 0.2          | -            | _            | -            | -            | -            | -            | -            | -            | -             | -             | _             |
| 1124                      | 1124             | cis-v-Menth-2-en-1-ol                     | -            | -            | -            | -            | -            | -            | -            | -            | -            | 0.1           | 0.1           | -             |
| 1129                      | 1128             | (4E,6Z)-allo-Ocimene                      | -            | -            | -            | 0.2          | 0.2          | -            | 0.3          | 0.1          | 0.1          | 0.2           | 0.1           | 0.2           |
|                           |                  | · · · · · · · · · · · · · · · · · · ·     |              |              |              |              |              |              |              |              |              |               |               |               |

Table 6. Chemical compositions (%) of the essential oils of Lomatium multifidum (Nutt.) R.P. McNeill & Darrach.

| Tabl | 6   | 6  | Cont |
|------|-----|----|------|
| Iavi | le. | υ. | Com  |

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                         | Lm#1<br>(OR) | Lm#2<br>(OR) | Lm#3<br>(OR) | Lm#4<br>(OR) | Lm#5<br>(OR) | Lm#6<br>(OR) | Lm#7<br>(ID) | Lm#8<br>(ID) | Lm#9<br>(ID) | Lm#10<br>(OR) | Lm#11<br>(OR) | Lm#12<br>(OR) |
|--------------------|------------------|----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|
| 1137               | 1138             | Benzeneacetonitrile              | -            | -            | -            | -            | -            | -            | -            | -            | -            | 0.1           | -             | -             |
| 1139               | 1139             | (E)-Myroxide                     | 0.2          | -            | 0.3          | 0.2          | 0.2          | 0.1          | 0.1          | tr           | tr           | -             | 0.4           | 0.6           |
| 1142               | 1142             | trans-p-Menth-2-en-1-ol          | -            | -            | -            | -            | -            | -            | -            | -            | -            | -             | 0.1           | -             |
| 1144               | 1142             | Epoxyterpinolene                 | -            | -            | -            | -            | -            | -            | -            | 0.1          | 0.4          | -             | -             | -             |
| 1148               | 1149             | Camphor                          | 0.1          | -            | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1156               | 1156             | Pentylbenzene                    | -            | -            | -            | -            | -            | 0.1          | 0.1          | -            | -            | -             | -             | 0.2           |
| 1156               | 1156             | Camphene hydrate                 | 0.3          | 0.2          | 0.1          | 0.1          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1169               | 1169             | Rosefuran epoxide                | -            | -            | 0.2          | 0.1          | -            | 0.1          | -            | -            | -            | -             | -             | 0.2           |
| 1173               | 1173             | Borneol                          | 0.2          | tr           | 0.1          | -            | -            | -            | -            | -            | -            | -             | -             | 0.2           |
| 1179               | 1179             | 2-Isopropenyl-5-methyl-4-hexenal | -            | -            | -            | -            | 0.1          | -            | -            | 0.1          | 0.2          | -             | -             | -             |
| 1181               | 1180             | Terpinen-4-ol                    | 0.1          | tr           | -            | -            | -            | -            | -            | -            | tr           | -             | -             | -             |
| 1186               | 1188             | <i>p</i> -Methylacetophenone     | -            | 0.1          | 0.1          | -            | -            | 0.1          | -            | tr           | 0.2          | -             | -             | -             |
| 1187               | 1187             | Cryptone                         | -            | -            | -            | 0.2          | -            | -            | -            | -            | -            | 0.1           | 2.3           | -             |
| 1188               | 1188             | <i>p</i> -Cymen-8-ol             | 0.1          | 0.2          | 0.2          | -            | 0.3          | 0.1          | -            | 0.7          | 1.6          | -             | -             | 0.2           |
| 1195               | 1195             | α-Terpineol                      | 0.2          | 0.1          | 0.2          | tr           | -            | 0.1          | 0.1          | 0.1          | 0.1          | 0.1           | 0.2           | 0.2           |
| 1207               | 1206             | Decanal                          | -            | 0.1          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1208               | 1207             | (3E)-Octenyl acetate             | 0.3          | -            | -            | -            | -            | -            | 0.2          | 0.1          | 0.1          | tr            | 0.1           | 0.1           |
| 1210               | 1211             | Octyl acetate                    | -            | 0.3          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1226               | 1231             | (3Z)-Hexenyl 2-methylbutanoate   | -            | -            | -            | -            | -            | -            | -            | -            | -            | -             | -             | 0.2           |
| 1229               | 1229             | I nymyl metnyl etner             | -            | 0.1          | -            | -            | 1.2          | -            | -            | -            | 0.1          | -             | -             | -             |
| 1244               | 1244             | Diparitono                       | -            | 0.2          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1234               | 1234             | Decanal                          | 0.1          | 0.1          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1272               | 12/1             | Bornyl acotato                   | 0.0          | 2.7          | 5.8          | 26           | 3.1          | 01           | -            | -            | 01           | -             | 20            | 3.0           |
| 1204               | 1202             | Unidentified a                   | 0.9          | 0.1          | 0.8          | 2.0<br>tr    | 0.4          | 0.1          | -            | -            | 0.1          | 1.1           | 2.9           | 2.4           |
| 1200               | 1302             | 4 Mothylhoxyl 2 mothylhutanoato  | -            | -            | 0.0          | -            | 0.8          | 0.2          | -            | _            | -            | -             | _             | 0.3           |
| 1307               | 1310             | cie-3-Butyl-4-vinyl cyclopentene | 01           | _            | _            |              | _            |              | _            |              |              | _             |               | 0.5           |
| 1342               | 1343             | 2-(2 5-Dimethylphonyl)propagal   | 0.1          | _            | _            | _            | 03           | 01           | _            | 0.2          | 14           | _             | _             | _             |
| 1346               | 1346             | <i>a</i> -Terninyl acetate       | -            | _            | _            | _            | -            | 0.1          | _            | 0.2          | 03           | _             | _             | _             |
| 1350               | 1348             | α-Longininene                    | _            | -            | _            | _            | _            | -            | -            | - 0.2        | -            | _             | -             | 0.1           |
| 1369               | 1367             | Cyclosativene                    | -            | -            | 02           | -            | -            | 01           | 01           | 02           | 0.1          | -             | -             | -             |
| 1370               | 1370             | iso-Ledene                       | -            | -            | 0.2          | 0.7          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1374               | 1372             | Longicyclene                     | -            | -            | 0.3          | 0.1          | -            | 0.1          | 0.5          | 0.2          | 0.2          | -             | -             | 0.2           |
| 1376               | 1375             | α-Copaene                        | -            | -            | -            | 0.1          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1389               | 1390             | trans-6-Elemene                  | -            | -            | -            | -            | -            | -            | -            | -            | -            | 0.1           | -             | -             |
| 1405               | 1411             | Thymohydroguinone dimethyl ether | -            | -            | -            | -            | -            | -            | -            | -            | -            | -             | -             | 0.1           |
| 1406               | 1406             | α-Gurjunene                      | -            | -            | -            | 0.1          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1408               | 1408             | Decvl acetate                    | -            | 7.7          | -            | -            | -            | -            | -            | -            | -            | 0.2           | 1.7           | -             |
| 1408               | 1405             | (Z)-β-Caryophyllene              | -            | -            | -            | -            | -            | -            | -            | -            | -            | -             | -             | 0.6           |
| 1409               | 1411             | Longifolene                      | -            | -            | 3.9          | 1.3          | 1.5          | 1.7          | 4.9          | 2.7          | 2.8          | -             | 0.7           | 2.7           |
| 1410               | 1415             | β-Maaliene                       | -            | -            | -            | 0.1          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1415               | 1414             | α-Cedrene                        | -            | -            | 0.2          | 0.1          | -            | -            | 0.1          | 0.1          | 0.1          | -             | -             | -             |
| 1419               | 1417             | (E)-β-Caryophyllene              | 0.1          | 0.1          | 0.5          | 0.4          | 0.7          | 0.2          | 0.2          | 0.3          | 0.2          | 0.5           | 0.4           | 0.1           |
| 1423               | 1423             | β-Cedrene                        | -            | -            | 0.1          | 0.1          | -            | -            | 0.1          | 0.1          | 0.1          | tr            | 0.2           | -             |

| Tab | le 6. | . Cont. |
|-----|-------|---------|
|     |       |         |

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                             | Lm#1<br>(OR) | Lm#2<br>(OR) | Lm#3<br>(OR) | Lm#4<br>(OR) | Lm#5<br>(OR) | Lm#6<br>(OR) | Lm#7<br>(ID) | Lm#8<br>(ID) | Lm#9<br>(ID) | Lm#10<br>(OR) | Lm#11<br>(OR) | Lm#12<br>(OR) |
|--------------------|------------------|--------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|
| 1427               | 1430             | γ-Maaliene                           | -            | -            | -            | 0.2          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1429               | 1430             | γ-Elemene                            | -            | -            | -            | -            | -            | -            | -            | -            | -            | 0.1           | -             | -             |
| 1433               | 1432             | <i>trans-</i> α-Bergamotene          | 0.1          | -            | 0.3          | 0.3          | 0.1          | 0.1          | 0.2          | 0.2          | 0.1          | 0.1           | 0.5           | 0.1           |
| 1434               | 1435             | α-Maaliene                           | -            | -            | -            | 0.1          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1434               | 1436             | α-Guaiene                            | -            | -            | -            | -            | -            | -            | -            | 0.1          | 0.1          | 0.3           | -             | -             |
| 1436               | 1433             | β-Copaene                            | -            | -            | -            | 0.1          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1438               | 1438             | Aromadendrene                        | -            | -            | 0.5          | 1.7          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1439               | 1438             | α-Guaiene                            | -            | -            | 0.4          | 1.2          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1440               | 1440             | Guaia-6,9-diene                      | -            | -            | -            | -            | -            | -            | -            | tr           | tr           | -             | -             | -             |
| 1446               | 1446             | cis-Muurola-3,5-diene                | -            | -            | -            | 0.3          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1447               | 1447             | Geranylacetone                       | -            | -            | -            | -            | -            | -            | -            | -            | -            | 0.1           | 0.1           | 0.1           |
| 1449               | 1449             | $\alpha$ -Himachalene                | -            | -            | 0.3          | 0.1          | -            | 0.1          | 0.4          | 0.3          | 0.2          | -             | 0.2           | 0.2           |
| 1452               | 1452             | ( <i>E</i> )-β-Farnesene             | -            | -            | 0.5          | 0.4          | 0.2          | 0.4          | 0.3          | 0.8          | 0.5          | 0.1           | 0.8           | 0.2           |
| 1453               | 1453             | Prezizaene                           | -            | -            | -            | -            | -            | -            | -            | -            | 0.2          | -             | -             | -             |
| 1455               | 1454             | $\alpha$ -Humulene                   | 0.8          | 0.9          | tr           | -            | -            | -            | -            | tr           | 0.1          | 0.1           | 0.1           | -             |
| 1457               | 1451             | Amorpha-4,11-diene                   | -            | -            |              | -<br>0 E     | -            | -            | 0.1          | 0.1          | 0.1          | -             | -             | -             |
| 1459               | 1458             | allo-Aromadendrene                   | -            | -            | 0.2          | 0.5          | -            | -            | -            | -            | 0.1          | -             | -             | -             |
| 1400               | 1403             | Soline 4.11 diana                    | -            | -            | -            | -            | -            | 0.2          | -            | 0.1          | 0.1          | 0.1           | -             | -             |
| 1475               | 1474             | Sellina-4,11-cliene                  | -            | -            | 0.2          | 0.5          | -            | 0.2          | -            | 0.1          | -            | 0.1           | -             | -             |
| 1472               | 1475             | p-Guijulielle<br>Dodoganol           | -            | 0.2          | 0.2          | 0.5          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1474               | 1475             | a Amorphono                          | -            | 0.2          | -            | -            | -            | -            | -            | 0.0          | 0.5          | -             | -             | -             |
| 1470               | 1479             | v Himachalono                        |              | 0.1          | 0.2          | -            | _            | -            | 0.2          | 0.9          | 0.5          | -             | -             | -             |
| 1/81               | 1/82             | ar-Curcumene                         |              | _            | 0.2          | _            |              | 01           | 0.2          | 03           | 07           |               |               | _             |
| 1486               | 1482             | δ-Selinene                           | _            | _            | 0.1          | 03           | _            | 0.1          | 0.5          | -            | 0.7          | _             | _             | _             |
| 1488               | 1489             | ß-Selinene                           | -            | -            | 02           | 0.5          | -            | 03           | _            | 01           | _            | 02            | _             | _             |
| 1489               | 1489             | $(7 F)$ - $\alpha$ -Farnesene        | 32           | 14           | -            | -            | -            | 0.5          | 02           | -            | _            | -             | _             | _             |
| 1490               | 1491             | Viridiflorene                        | -            | -            | 10           | 59           | 01           | -            | -            | -            | -            | -             | _             | -             |
| 1495               | 1497             | α-Selinene                           | -            | 0.1          | -            | 0.2          | -            | 02           | 01           | 01           | -            | 0.1           | _             | -             |
| 1498               | 1497             | Capillene                            | -            | -            | -            | -            | 0.5          | -            | -            | -            | -            | -             | -             | _             |
| 1498               | 1500             | $\alpha$ -Muurolene                  | -            | 0.1          | -            | -            | -            | -            | 0.1          | tr           | -            | -             | -             | _             |
| 1499               | 1503             | ß-Himachalene                        | -            | -            | 0.2          | 0.1          | -            | -            | 0.2          | 0.3          | 0.2          | -             | -             | -             |
| 1501               | 1505             | α-Bulnesene                          | -            | -            | 0.2          | 0.5          | -            | -            | -            | -            | -            | 0.2           | -             | -             |
| 1502               | 1504             | Epizonarene                          | -            | -            | -            | -            | -            | -            | -            | 0.1          | -            | -             | -             | -             |
| 1503               | 1504             | $(\vec{E}, E)$ - $\alpha$ -Farnesene | 0.3          | 0.3          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1504               | 1501             | β-Dihydroagarofuran                  | -            | -            | -            | -            | -            | 0.2          | -            | 0.1          | -            | -             | -             | -             |
| 1506               | 1508             | β-Bisabolene                         | -            | -            | 0.4          | 0.2          | 0.1          | 0.1          | 0.3          | 1.2          | 1.2          | 0.1           | 0.6           | 0.2           |
| 1509               | 1511             | β-Curcumene                          | -            | -            | -            | -            | -            | -            | -            | -            | 0.2          | -             | -             | -             |
| 1509               | 1511             | $(Z)$ - $\gamma$ -Bisabolene         | -            | 0.2          | -            | 0.1          | -            | 1.9          | 3.7          | 1.0          | 0.1          | -             | -             | -             |
| 1512               | 1514             | Sesquicineole                        | -            | -            | -            | -            | -            | -            | -            | 0.1          | 0.1          | -             | -             | -             |
| 1516               | 1518             | Bornyl isovalerate                   | -            | -            | -            | -            | -            | -            | -            | -            | 0.1          | -             | -             | -             |
| 1517               | 1519             | Nootkatene                           | -            | -            | -            | 0.3          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1518               | 1518             | δ-Cadinene                           | -            | 0.1          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1523               | 1523             | β-Sesquiphellandrene                 | -            | -            | -            | -            | -            | -            | -            | -            | -            | -             | 0.2           | -             |

| TT 1 1 |    |     |     |
|--------|----|-----|-----|
| Iahi   | Oh | . ( | out |
| Iuvi   |    | . L | on. |

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                        | Lm#1<br>(OR) | Lm#2<br>(OR) | Lm#3<br>(OR) | Lm#4<br>(OR) | Lm#5<br>(OR) | Lm#6<br>(OR) | Lm#7<br>(ID) | Lm#8<br>(ID) | Lm#9<br>(ID) | Lm#10<br>(OR) | Lm#11<br>(OR) | Lm#12<br>(OR) |
|--------------------|------------------|---------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|
| 1529               | 1528             | ( <i>E</i> )-γ-Bisabolene       | -            | 0.1          | -            | -            | -            | -            | 0.2          | 0.4          | 0.1          | -             | -             | -             |
| 1537               | 1540             | Selina-4(15),7(11)-diene        | -            | -            | -            | -            | -            | -            | -            | 0.6          | 0.2          | 0.4           | -             | -             |
| 1540               | 1540             | $(E)$ - $\alpha$ -Bisabolene    | -            | -            | -            | -            | -            | 0.1          | 0.2          | 0.6          | 0.6          | -             | 0.2           | -             |
| 1542               | 1542             | Selina-3,7(11)-diene            | -            | -            | -            | -            | -            | 0.1          | -            | 0.7          | 0.2          | 0.3           | -             | -             |
| 1548               | 1549             | α-Elemol                        | -            | -            | -            | -            | -            | -            | -            | -            | -            | -             | 0.6           | -             |
| 1558               | 1560             | Germacrene B                    | -            | -            | -            | -            | -            | -            | -            | -            | -            | 0.2           | -             | -             |
| 1560               | 1560             | (E)-Nerolidol                   | 0.2          | 1.3          | 0.9          | 0.4          | 0.3          | 2.8          | 0.9          | 0.6          | 0.3          | 0.1           | 1.0           | 0.8           |
| 1562               | 1564             | <i>epi-</i> Globulol            | -            | -            | 0.5          | 1.3          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1570               | 1568             | Palustrol                       | -            | -            | -            | 0.9          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1570               | 1570             | Neryl 2-methylbutanoate         | -            | -            | -            | -            | -            | -            | -            | -            | -            | -             | -             | 0.1           |
| 1576               | 1575             | Caryolan-8-ol                   | -            | -            | 0.3          | -            | -            | -            | -            | 0.1          | -            | -             | -             | -             |
| 1576               | 1578             | Spathulenol                     | -            | -            | 1.0          | 0.5          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1581               | 1582             | Caryophyllene oxide             | -            | -            | 0.4          | -            | -            | 0.1          | -            | -            | -            | -             | -             | -             |
| 1582               |                  | Unidentified <sup>b</sup>       | -            | -            | -            | 1.2          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1585               | 1592             | Globulol                        | -            | -            | 2.3          | 5.6          | 0.1          | 0.1          | -            | -            | -            | -             | -             | -             |
| 1594               | 1594             | Viridiflorol                    | -            | -            | -            | 0.3          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1595               | 1596             | $(E)$ - $\beta$ -Elemenone      | 0.2          | -            | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1595               | 1593             | Guaiol                          | -            | -            | -            | -            | -            | 0.1          | -            | 0.1          | -            | 0.3           | -             | -             |
| 1596               | 1596             | Geranyl 2-methylbutanoate       | -            | -            | -            | -            | -            | -            | -            | -            | -            | -             | -             | 0.4           |
| 1597               | 1596             | Cubeban-11-ol                   | -            | -            | 0.3          | 0.9          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1602               | 1601             | Longiborneol                    | -            | -            | -            | 0.2          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1604               | 1604             | Humulol                         | 0.9          | 2.0          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1605               | 1607             | 5 <i>-epi-7-epi-</i> α-Eudesmol | -            | -            | -            | -            | -            | 0.1          | -            | -            | -            | -             | -             | -             |
| 1606               | 1609             | Rosifoliol                      | -            | -            | -            | 0.4          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1608               | 1610             | Cedrol                          | -            | -            | 0.2          | 0.2          | -            | -            | -            | -            | -            | -             | 0.4           | -             |
| 1609               | 1613             | Humulene epoxide II             | -            | 0.4          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1616               | 1613             | Ledol                           | -            | -            | -            | -            | -            | 0.2          | -            | -            | -            | -             | -             | -             |
| 1624               | 1624             | <i>epi-γ</i> -Eudesmol          | -            | -            | 1.0          | 2.6          | 0.1          | 2.6          | 1.6          | 1.4          | -            | -             | -             | -             |
| 1626               | 1624             | Selina-6-en-4β-ol               | -            | 0.1          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1630               | 1632             | γ-Eudesmol                      | -            | -            | -            | -            | -            | 4.1          | 2.6          | 1.9          | tr           | 0.1           | 2.8           | -             |
| 1637               | 1638             | Gossonorol                      | -            | -            | -            | -            | -            | 0.1          | 0.1          | -            | -            | -             | -             | -             |
| 1645               | 1645             | Agarospirol (=Hinesol)          | -            | -            | -            | -            | -            | 0.1          | 0.3          | 0.3          | -            | -             | -             | -             |
| 1648               | 1644             | Selina-3,11-dien-6α-ol          | -            | -            | -            | -            | -            | -            | -            | -            | -            | 0.1           | -             | -             |
| 1649               | 1649             | 3-Butylphthalide                | -            | 0.1          | -            | -            | -            | -            | -            | -            | -            | -             | -             | -             |
| 1653               | 1650             | Valerianol                      | -            | -            | -            | -            | -            | 1.1          | 0.9          | 1.1          | -            | -             | -             | -             |
| 1653               | 1655             | α-Bisabolol oxide B             | -            | -            | -            | -            | -            | -            | -            | -            | 0.6          | -             | -             | -             |
| 1654               | 1655             | α-Cadinol                       | -            | 0.1          | -            | -            | -            | -            | -            | -            | -            |               | -             | -             |
| 1655               | 1655             | α-Eudesmol                      | -            | -            | -            | -            | -            | 6.5          | 4.4          | 3.6          | -            | 0.6           | 5.0           | 0.2           |
| 1658               | 1660             | <i>neo</i> -Intermedeol         | -            | -            | -            | -            | -            | 0.3          | -            | 0.2          | -            | -             | -             | -             |
| 1662               | 1664             | ar-Turmerone                    | -            | 0.1          | -            | -            | -            | -            |              | -            | -            | -             | -             | -             |
| 1670               | 1671             | β-Bisabolol                     | -            | -            | -            | -            | -            | 0.1          | 1.5          | -            | 0.1          | -             | -             | -             |
| 1671               | 1668             | Intermedeol                     | -            | -            | 0.6          | -            | -            | 0.1          | -            | 0.2          | 0.1          | -             | -             | -             |
| 1675               | 1673             | Bulnesol                        | -            | -            | -            | 0.5          | -            | -            | -            | -            | -            | -             | -             | -             |
| 1685               | 1686             | <i>epi</i> -α-Bisabolol         | -            | -            | 0.3          | -            | -            | 0.2          | 0.3          | -            | -            | -             | 0.3           | -             |

| Tabl | le | 6. | Con | t. |
|------|----|----|-----|----|
|      | _  |    |     |    |

| RI <sub>calc</sub>                                   | RI <sub>db</sub>                         | Compound                                                                                                          | Lm#1<br>(OR) | Lm#2<br>(OR)         | Lm#3<br>(OR)                         | Lm#4<br>(OR)              | Lm#5<br>(OR)                  | Lm#6<br>(OR)             | Lm#7<br>(ID) | Lm#8<br>(ID)            | Lm#9<br>(ID) | Lm#10<br>(OR)                 | Lm#11<br>(OR)                      | Lm#12<br>(OR) |
|------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------|----------------------|--------------------------------------|---------------------------|-------------------------------|--------------------------|--------------|-------------------------|--------------|-------------------------------|------------------------------------|---------------|
| 1686                                                 | 1688                                     | α-Bisabolol                                                                                                       | -            | -                    | 0.3                                  | -                         | -                             | 0.1                      | 0.2          | 22.0                    | 26.3         | 0.1                           | 0.5                                | -             |
| 1692                                                 | 1692                                     | Civetone                                                                                                          | -            | 0.1                  | -                                    | -                         | -                             | 0.1                      | -            | -                       | -            | -                             | -                                  | -             |
| 1692                                                 | 1694                                     | Germacrone                                                                                                        | -            | -                    | -                                    | -                         | -                             | -                        | -            | -                       | -            | -                             | 0.3                                | -             |
| 1697                                                 | 1696                                     | Juniper camphor                                                                                                   | -            | -                    | -                                    | -                         | -                             | -                        | -            | 0.2                     | -            | 0.2                           | -                                  | -             |
| 1707                                                 | 1701                                     | β-Sinensal                                                                                                        | -            | -                    | -                                    | -                         | -                             | -                        | 0.2          | -                       | -            | -                             | -                                  | -             |
| 1712                                                 | 1711                                     | 14-Hydroxy-α-humulene                                                                                             | 1.8          | 1.4                  | -                                    | -                         | -                             | -                        | -            | -                       | -            | -                             | -                                  | -             |
| 1712                                                 | 1712                                     | Senkyunolide (=Sedanenolide)                                                                                      | -            | -                    | 0.2                                  | -                         | 0.1                           | -                        | -            | -                       | -            | -                             | -                                  | -             |
| 1720                                                 | 1722                                     | 3-Isobutylidene phthalide                                                                                         | -            | -                    | -                                    | -                         | -                             | -                        | -            | -                       | -            | -                             | -                                  | 0.9           |
| 1722                                                 | 1720                                     | Longifolol                                                                                                        | -            | 0.3                  | -                                    | -                         | -                             | -                        | -            | -                       | -            | -                             | -                                  | -             |
| 1741                                                 | 1742                                     | β-Bergamotol                                                                                                      | 1.5          | 0.4                  | -                                    | -                         | -                             | -                        | -            | -                       | -            | -                             | -                                  | -             |
| 1742                                                 | 1742                                     | (6S,7R)-Bisabolone                                                                                                | -            | -                    | -                                    | -                         | -                             | -                        | -            | -                       | -            | -                             | 0.2                                | -             |
| 1760                                                 | 1760                                     | α-Sinensal                                                                                                        | 0.1          | 0.2                  | -                                    | -                         | -                             | -                        | -            | -                       | -            | -                             | -                                  | -             |
| 1767                                                 | 1769                                     | Benzyl benzoate                                                                                                   | -            | -                    | -                                    | -                         | -                             | -                        | -            | -                       | 0.2          | -                             | -                                  | -             |
| 1767                                                 | 1765                                     | Eudesmyl acetate                                                                                                  | -            | -                    | -                                    | -                         | -                             | 2.3                      | 0.2          | 0.7                     | -            | -                             | -                                  | -             |
| 1779                                                 | 1776                                     | δ-Cuparenol                                                                                                       | -            | -                    | -                                    | -                         | -                             | -                        | -            | -                       | -            | 4.8                           | -                                  | -             |
| 1783                                                 | 1784                                     | Agarospyryl acetate                                                                                               | -            | -                    | -                                    | -                         | -                             | 5.3                      | 0.5          | 1.6                     | -            | -                             | -                                  | -             |
| 1878                                                 | 1879                                     | 4-Phytadiene                                                                                                      | -            | 0.1                  | -                                    | -                         | -                             | -                        | -            | -                       | -            | -                             | -                                  | -             |
| 1932                                                 | 1933                                     | Beyerene                                                                                                          | -            | 0.1                  | 0.1                                  | -                         | -                             | 0.1                      | -            | -                       | -            | -                             | -                                  | -             |
| 1939                                                 | 1938                                     | Hexadecalact-16-one                                                                                               | -            | -                    | -                                    | -                         | -                             | -                        | -            | -                       | -            | -                             | 1.8                                | -             |
| 1944                                                 | 1946                                     | <i>m</i> -Camphorene                                                                                              | -            | 0.3                  | 0.2                                  | 0.1                       | -                             | 0.3                      | -            | -                       | -            | -                             | -                                  | -             |
| 1959                                                 |                                          | Unidentified <sup>c</sup>                                                                                         | 1.4          | 6.0                  | 0.9                                  | 2.6                       | 2.2                           | 6.2                      | 4.7          | 6.7                     | 0.1          | 0.3                           | -                                  | -             |
| 1959                                                 | 1958                                     | Palmitic acid                                                                                                     | -            | -                    | -                                    | -                         | -                             | -                        | -            | -                       | -            | 0.2                           | 1.9                                | -             |
| 1961                                                 |                                          | 2-Methyl-4,5-nonadiene <sup>d</sup>                                                                               | -            | 0.8                  | 0.2                                  | 0.5                       | 0.3                           | 0.8                      | 1.1          | 1.2                     | -            | -                             | -                                  | -             |
| 1979                                                 | 1984                                     | <i>p</i> -Camphorene                                                                                              | -            | 0.1                  | 0.1                                  | -                         | -                             | 0.1                      | -            | -                       | -            | -                             | -                                  | -             |
| 1981                                                 | 1985                                     | Vinyl palmitate                                                                                                   | -            | 0.3                  | -                                    | -                         | -                             | -                        | -            | -                       | -            | -                             | -                                  | -             |
| 2028                                                 |                                          | Unidentified <sup>e</sup>                                                                                         | -            | 0.7                  | 0.2                                  | 0.5                       | 1.0                           | 0.4                      | 0.3          | 0.7                     | -            | -                             | -                                  | -             |
| 2128                                                 | 2128                                     | Linoleic acid                                                                                                     | -            | -                    | -                                    | -                         | -                             | 0.2                      | -            | -                       | -            | -                             | 0.2                                | -             |
| 2148                                                 | 2143                                     | Serratol                                                                                                          | -            | -                    | -                                    | -                         | -                             | -                        | -            | -                       | -            | 0.4                           | 0.1                                | 0.2           |
| 2164                                                 | 2164                                     | Ethyl linoleate                                                                                                   | 0.3          | 1.0                  | 0.2                                  | 0.7                       | 0.4                           | 0.6                      | 0.2          | 0.6                     | -            | 0.2                           | -                                  | -             |
| 2203                                                 |                                          | Suberosin <sup>d</sup>                                                                                            | -            | -                    | 0.9                                  | 0.4                       | 2.2                           | -                        | -            | -                       | -            | -                             | -                                  | -             |
| 2205                                                 |                                          | Unidentified <sup>f</sup>                                                                                         | -            | -                    | -                                    | -                         | _                             | -                        | -            | -                       | -            | -                             | _                                  | 1.0           |
| 2200                                                 | 2300                                     | Tricosane                                                                                                         | _            | _                    | _                                    | _                         | _                             | _                        | _            | _                       | _            | _                             | 0.2                                | 0.1           |
| 2500                                                 | 2500                                     | Pentacosane                                                                                                       | 01           | 01                   | 02                                   | -                         | 02                            | tr                       | _            | -                       | -            | 0.1                           | 0.2                                | 0.1           |
| 2700                                                 | 2700                                     | Heptacosane                                                                                                       | -            | -                    | 0.2                                  | -                         | 0.4                           | -                        | -            | -                       | -            | 0.2                           | 0.4                                | 0.1           |
| 2148<br>2164<br>2203<br>2205<br>2300<br>2500<br>2700 | 2143<br>2164<br><br>2300<br>2500<br>2700 | Ethyl linoleate<br>Suberosin <sup>d</sup><br>Unidentified <sup>f</sup><br>Tricosane<br>Pentacosane<br>Heptacosane | 0.3          | 1.0<br>-<br>-<br>0.1 | 0.2<br>0.9<br>-<br>0.2<br>0.2<br>0.2 | 0.7<br>0.4<br>-<br>-<br>- | 0.4<br>2.2<br>-<br>0.2<br>0.4 | 0.6<br>-<br>-<br>tr<br>- | 0.2          | 0.6<br>-<br>-<br>-<br>- |              | 0.4<br>0.2<br>-<br>0.1<br>0.2 | 0.1<br>-<br>-<br>0.2<br>0.4<br>0.4 |               |

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                    | Lm#1<br>(OR) | Lm#2<br>(OR) | Lm#3<br>(OR) | Lm#4<br>(OR) | Lm#5<br>(OR) | Lm#6<br>(OR) | Lm#7<br>(ID) | Lm#8<br>(ID) | Lm#9<br>(ID) | Lm#10<br>(OR) | Lm#11<br>(OR) | Lm#12<br>(OR) |
|--------------------|------------------|-----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|
|                    |                  | Monoterpene hydrocarbons    | 83.7         | 61.0         | 59.8         | 52.0         | 79.7         | 44.0         | 53.5         | 35.1         | 49.1         | 84.9          | 66.4          | 73.6          |
|                    |                  | Oxygenated monoterpenoids   | 3.0          | 2.5          | 8.9          | 3.8          | 5.4          | 1.5          | 0.8          | 1.4          | 3.1          | 1.5           | 7.0           | 7.4           |
|                    |                  | Sesquiterpene hydrocarbons  | 4.5          | 3.3          | 9.9          | 16.5         | 2.6          | 6.2          | 12.6         | 11.3         | 8.8          | 2.8           | 3.8           | 4.3           |
|                    |                  | Oxygenated sesquiterpenoids | 4.7          | 6.3          | 8.2          | 13.8         | 0.5          | 26.5         | 13.8         | 34.1         | 27.5         | 6.2           | 11.0          | 1.0           |
|                    |                  | Diterpenes                  | 0.0          | 0.6          | 0.4          | 0.1          | 0.0          | 0.4          | 0.0          | 0.0          | 0.0          | 0.4           | 0.1           | 0.2           |
|                    |                  | Benzenoid aromatics         | 0.1          | 0.3          | 2.0          | 1.2          | 3.6          | 0.3          | 3.6          | 0.2          | 1.8          | 0.2           | 0.3           | 1.5           |
|                    |                  | Others                      | 1.2          | 13.8         | 3.9          | 3.3          | 3.1          | 9.7          | 8.6          | 7.5          | 8.0          | 3.0           | 10.6          | 4.3           |
|                    |                  | Total identified            | 97.2         | 87.9         | 93.0         | 90.6         | 94.8         | 88.5         | 92.9         | 89.6         | 98.3         | 98.9          | 99.3          | 92.3          |

Table 6. Cont.

 $RI_{calc}$  = retention index calculated with respect to a homologous series of *n*-alkanes on a ZB-5ms column.  $RI_{db}$  = reference retention index values obtained from the databases. Lm = *Lomatium multifidum*. OR = collected from eastern Oregon. ID = collected from western Idaho. tr = trace (<0.05%). - = not observed. <sup>a</sup> MS(EI): 96 (47%), 85 (53%), 81 (63%), 57 (100%), 55 (57%), 41 (29%). <sup>b</sup> MS(EI): 220 (92%), 205 (26%), 187 (21%), 177 (25%), 162 (33%), 159 (44%), 147 (77%), 135 (47%), 135 (48%), 133 (43%), 121 (42%), 119 (48%), 107 (70%), 105 (100%), 93 (60%), 91 (88%), 79 (58%), 77 (44%), 55 (40%), 43 (65%), 41 (80%). <sup>c</sup> MS(EI): 280 (1%), 237 (36%), 219 (4%), 149 (6%), 135 (15%), 121 (18%), 111 (13%), 97 (28%), 95 (25%), 83 (50%), 81 (33%), 69 (74%), 67 (30%), 57 (27%), 55 (100%), 43 (74%), 41 (48%). <sup>d</sup> Reference RI not available, identification tentative. <sup>e</sup> MS(EI): 362 (3%), 313 (3%), 28 3(3%), 265 (4%), 251 (28%), 149 (7%), 135 (13%), 123 (14%), 121 (16%), 111 (22%), 109 (25%), 83 (68%), 81 (51%), 69 (81%), 67 (38%), 57 (47%), 55 (100%), 43 (98%), 41 (49%). <sup>f</sup> MS(EI): 244 (68%), 229 (100%), 214 (7%), 201 (7%), 189 (17%), 159 (12%), 131 (11%), 115 (10%), 77 (10%).

Multivariate analyses (HCA and PCA) were carried out in order to visualize the chemical differences and associations in the essential oils of the two members of the *L. dissectum* complex (*L. dissectum* and *L. multifidum*). The HCA dendrogram and the PCA biplot are shown in Figures 10 and 11, respectively. The HCA shows two major clusters: (1) a cluster made up of *L. dissectum* samples, dominated by octyl acetate and decyl acetate, and (2) a cluster with  $\beta$ -myrcene and (*E*)- $\beta$ -ocimene as defining components and populated by *L. multifidum* samples. The *L. dissectum* and *L. multifidum* samples from Bairamian and co-workers [22] were included in the HCA for comparison. The *L. multifidum* cluster can be subdivided further depending on the concentrations of  $\beta$ -myrcene. The PCA biplot also shows three groupings: (1) the *L. dissectum* group, (2) the *L. multifidum* high  $\beta$ -myrcene group, and (3) the *L. multifidum* less  $\beta$ -myrcene group. The two samples from Bairamian and co-workers (*L. dissectum* var. *multifidum* and *L. dissectum* var. *dissectum*) are separated from the other groups.



**Figure 10.** Dendrogram obtained by hierarchical cluster analysis (HCA) of essential oil compositions (major essential oil components) of members of the *Lomatium dissectum* complex. Lm (OR) = *Lomatium multifidum* from eastern Oregon, Lm (ID) = *Lomatium multifidum* from western Idaho, Ld = *Lomatium dissectum* (from western Idaho), Ldd (Bairamian) = *Lomatium dissectum* var. *dissectum* from reference [22], Ldm (Baiaramian) = *Lomatium dissectum* var. *multifidum* from reference [22].



**Figure 11.** The bidimensional plot of the first two components (F1 and F2) from principal component analysis (PCA) of members of the *Lomatium dissectum* complex, based on major components in their essential oils. Lm (OR) = *Lomatium multifidum* from eastern Oregon, Lm (ID) = *Lomatium multifidum* from western Idaho, Ld = *Lomatium dissectum* (from western Idaho), Ldd (Bairamian) = *Lomatium dissectum* var. *dissectum* from reference [22], Ldm (Baiaramian) = *Lomatium dissectum* var. *multifidum* from reference [22].

#### 2.6. Lomatium nudicaule

Seven samples of *L. nudicaule* were collected from three sites in western Idaho. The colorless to pale yellow essential oils were obtained in yields of 0.15% to 3.01%. The essential oil compositions are presented in Table 7. A total of 109 compounds were identified in the essential oils, accounting for 90.4% to 98.7% of the total compositions. The major components in the *L. nudicaule* essential oils were β-phellandrene (16.0–45.7%), (*Z*)-ligustilide (5.6–47.1%), (*E*)-β-ocimene (3.3–9.9%), δ-3-carene (0.2–12.6%), myrcene (0.7–6.1%), cryptone (0.3–7.7%), and germacrene B (0.2–9.3%).

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                                   | Ln#1            | Ln#2 | Ln#3 | Ln#4    | Ln#5     | Ln#6    | Ln#7 |
|--------------------|------------------|--------------------------------------------|-----------------|------|------|---------|----------|---------|------|
| 926                | 927              | α-Thuiene                                  | tr              | tr   | 0.1  | tr      | tr       | tr      | tr   |
| 933                | 933              | $\alpha$ -Pinene                           | 1.3             | 0.8  | 1.0  | 0.5     | 0.9      | 0.4     | 0.4  |
| 950                | 950              | Camphene                                   | tr              | tr   | tr   | tr      | tr       | tr      | tr   |
| 973                | 970              | 377-Trimethylcyclohenta-135-triene         | -               | 01   | 02   | -       | -        | -       | -    |
| 974                | 972              | Sabinene                                   | 0.4             | 0.1  | 0.2  | 0.2     | 0.2      | 0.1     | 0.1  |
| 979                | 978              | B-Pinene                                   | 2.1             | 13   | 0.1  | 0.2     | 2.0      | 1.0     | 1.2  |
| 900                | 001              | Murcono                                    | 5.4             | 6.1  | 2.3  | 28      | 2.0      | 1.0     | 0.7  |
| 000                | 991              | 2 1 Dimethylonogyalonontanono <sup>a</sup> | J. <del>4</del> | 0.1  | 2.0  | 2.0     | 4.4      | 1.1     | 0.7  |
| 999<br>1005        | 1004             | Months 1(7) 8 diana                        | u<br>0.4        | 0.1  | 0.2  | 0.2     | 0.2      | 0.2     | 0.1  |
| 1005               | 1004             | <i>p</i> -Mentha-1(7),8-diene              | 0.4             | 0.5  | 0.5  | 0.2     | 0.5      | 0.2     | 0.1  |
| 1007               | 1007             | α-Phellandrene                             | 2.3             | 0.1  | 0.1  | 1./     | 2.5      | 1.1     | 0.4  |
| 1010               | 1009             | 8-3-Carene                                 | 0.8             | 5.2  | 12.6 | 1.3     | 1.9      | 0.5     | 0.2  |
| 1018               | 1018             | α-Ierpinene                                | 0.1             | tr   | -    | 0.1     | 0.2      | tr      | tr   |
| 1020               | 1022             | <i>m</i> -Cymene                           | 0.2             | tr   | tr   | -       | -        | -       | -    |
| 1025               | 1025             | <i>p</i> -Cymene                           | 0.2             | 2.3  | 4.7  | 0.3     | 0.4      | 0.2     | 0.2  |
| 1030               | 1030             | Limonene                                   | 0.1             | 1.0  | 2.5  | 0.5     | 0.4      | 0.2     | 0.3  |
| 1032               | 1031             | β-Phellandrene                             | 44.7            | 33.3 | 16.5 | 35.8    | 45.7     | 30.3    | 16.0 |
| 1035               | 1034             | (Z)-β-Ocimene                              | 0.2             | 0.8  | 1.7  | 0.2     | 0.1      | 0.3     | 1.8  |
| 1047               | 1046             | (E)-β-Ocimene                              | 9.6             | 3.6  | 6.0  | 3.3     | 3.7      | 5.9     | 9.9  |
| 1058               | 1057             | $\gamma$ -Terpinene                        | 0.1             | 0.1  | tr   | 0.1     | 0.1      | tr      | tr   |
| 1072               | 1072             | p-Cresol                                   | -               | 0.2  | 0.3  | -       | -        | -       | -    |
| 1074               | 1073             | $\alpha$ -Pinene oxide                     | -               | -    | 0.2  | -       | -        | -       | 0.1  |
| 1082               | 1080             | <i>m</i> -Cymenene                         | -               | -    | 0.1  | -       | -        | -       | -    |
| 1086               | 1086             | Terpinolene                                | 1.4             | 1.2  | 1.7  | 1.8     | 2.9      | 0.7     | 0.3  |
| 1091               | 1091             | n-Cymenene                                 | -               | 0.8  | 14   | -       | tr       | -       | tr   |
| 1093               | 1091             | Rosefuran                                  | -               | -    | -    | -       | -        | tr      | 01   |
| 1096               | 1097             | x-Pinene oxide                             | _               | _    | _    | tr      | tr       | tr      | 0.1  |
| 1100               | 1107             | Linaloal                                   | 0.6             | 0.2  | 0.2  | $0^{1}$ | $0^{2}$  | 0.5     | 0.1  |
| 1100               | 1101             | 6 Mathulhanta 25 dian 2 ana                | 0.0             | 0.2  | 0.2  | 0.2     | 0.2      | 0.5     | -    |
| 1103               | 1101             | 2 Mathellestel 2 mathellestereta           | -               | -    | 0.1  | -       | -        | 0.1     | -    |
| 1104               | 1104             | 2-Methylbutyl 2-methylbutyrate             | -               | -    | -    |         |          | 0.1     | -    |
| 1125               | 1124             | cis-p-Menth-2-en-1-ol                      | 0.1             | 0.1  | 0.1  | 0.1     | 0.1      | tr      | tr   |
| 1127               | 1131             | Cyclooctanone                              | -               | 0.1  | 0.5  | -       | -        | -       | -    |
| 1128               | 1127             | allo-Ocimene                               | -               | -    | -    | -       | -        | -       | 0.1  |
| 1136               | 1130             | (Z)-Myroxide                               | -               | 0.1  | 0.3  | -       | -        | -       | tr   |
| 1139               | 1339             | 3-Oxo- <i>p</i> -menth-1-en-7-al           | tr              | 0.5  | 0.3  | -       | -        | -       | -    |
| 1140               | 1141             | (E)-Myroxide                               | 0.1             | 0.6  | 1.3  | -       | -        | -       | tr   |
| 1143               | 1142             | <i>trans-p</i> -Menth-2-en-1-ol            | 0.1             | -    | -    | 0.1     | 0.1      | tr      | tr   |
| 1158               | 1156             | Pentvlbenzene                              | -               | -    | -    | tr      | tr       | tr      | tr   |
| 1159               | 1161             | 5-Pentylcyclohexa-1.3-diene                | 0.3             | -    | -    | 0.3     | 0.1      | 0.2     | 0.2  |
| 1175               | 1175             | (3E.5Z)-1.3.5-Undecatriene                 | 0.1             | -    | -    | 0.1     | 0.1      | 0.1     | tr   |
| 1178               | 1180             | (E)-Isocitral                              | -               | -    | -    | -       | tr       | tr      | -    |
| 1179               | 1180             | Terninen-4-ol                              | tr              | 0.1  | -    | tr      | tr       | tr      | -    |
| 1183               | 1188             | n-Methylacetonhenone                       | -               | 0.1  | 0.6  | ι1<br>_ |          | -       | _    |
| 1185               | 1100             | Cryptope                                   | _<br>           | 6.4  | 77   | 0.4     | 0.5      | 0.4     | 03   |
| 1100               | 1107             | (3F 5F) 1 3 5 Undecatriana                 | 0.0             | 0.4  | 1.1  | 0.4     | 0.0      | 0.4     | 0.0  |
| 1100               | 1100             | (5E,5E)-1,5,5-Undecamene                   | -               | -    | -    | Uľ<br>+ | LI'<br>+ | ur<br>+ | u    |
| 1194               | 1195             | a-terpineoi                                | 0.1             | -    | -    | tr      | tr       | tr      | -    |

 Table 7. Chemical compositions (%) of the essential oils of Lomatium nudicaule (Nutt.) J.M. Coult. & Rose.

| Tal | ole | 7. | Cont. |
|-----|-----|----|-------|
|     |     |    |       |

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                         | Ln#1      | Ln#2 | Ln#3        | Ln#4 | Ln#5      | Ln#6 | Ln#7 |
|--------------------|------------------|----------------------------------|-----------|------|-------------|------|-----------|------|------|
| 1196               | 1195             | trans-4-Caranone                 | 0.1       | 0.7  | 0.3         | -    | -         | -    | -    |
| 1197               | 1195             | <i>p</i> -Menth-3-en-7-al        | -         | 0.5  | 0.3         | 0.1  | 0.1       | 0.1  | tr   |
| 1201               | 1202             | <i>cis</i> -Sabinol              | 0.1       | 0.4  | 0.6         | 0.1  | 0.1       | 0.1  | tr   |
| 1208               | 1208             | trans-Piperitol                  | tr        | -    | -           | -    | tr        | -    | -    |
| 1224               | 1227             | Citronellol                      | 0.6       | 0.5  | 1.0         | 0.3  | 0.4       | 0.1  | -    |
| 1241               | 1247             | Cuminal                          | -         | 0.3  | 0.2         | -    | -         | -    | -    |
| 1249               | 1254             | <i>cis</i> -Piperitone epoxide   | -         | 0.2  | -           | -    | -         | -    | -    |
| 1263               | 1265             | (2E)-Decenal                     | -         | 0.2  | -           | -    | -         | -    | -    |
| 1272               | 1294             | <i>p</i> -Mentha-1,5-diene-7-ol  | 0.1       | 0.5  | 0.4         | 0.1  | 0.1       | 0.1  | -    |
| 1277               | 1277             | Phellandral                      | -         | 0.3  | 0.2         | -    | -         | -    | -    |
| 1286               | 1286             | α-Terpinen-7-al                  | tr        | 0.1  | 0.2         | -    | -         | -    | -    |
| 1291               | 1291             | p-Cymen-7-ol                     | 0.1       | 0.5  | 0.4         | tr   | tr        | tr   | -    |
| 1308               | 1313             | Phthalic anhydride               | -         | 1.2  | 1.7         | -    | -         | -    | -    |
| 1320               | 1318             | 3-Hvdroxycineole                 | -         | 0.2  | 0.4         | -    | -         | -    | -    |
| 1321               | 1320             | Methyl geranate                  | -         | -    | -           | tr   | tr        | tr   | -    |
| 1322               | 1318             | 4-Hydroxycryptone                | -         | 0.1  | 0.2         | -    | -         | -    | -    |
| 1336               | 1336             | δ-Elemene                        | -         | -    | -           | -    | tr        | tr   | tr   |
| 1339               | 1339             | 3-Oxo- <i>n</i> -menth-1-en-7-al | -         | -    | -           | tr   | tr        | tr   | tr   |
| 1343               |                  | Unidentified <sup>b</sup>        | 0.4       | 2.0  | 2.2         | 0.6  | 0.5       | 0.8  | 0.9  |
| 1375               | 1375             | α-Copaene                        | tr        | -    | -           | -    | -         | -    | -    |
| 1382               | 1383             | <i>cis</i> -β-Elemene            | _         | -    | -           | -    | tr        | 0.1  | tr   |
| 1389               | 1390             | trans-6-Elemene                  | 0.1       | -    | -           | 0.5  | 0.3       | 0.7  | 0.8  |
| 1420               | 1417             | $(E)$ - $\beta$ -Carvophyllene   | 0.1       | 0.1  | 0.3         | 0.3  | 0.3       | 0.8  | 0.1  |
| 1429               | 1427             | v-Elemene                        | 0.6       | 0.1  | 0.2         | 3.0  | 1.7       | 3.9  | 3.7  |
| 1452               | 1452             | (E)-β-Farnesene                  | 0.1       | 0.7  | 0.7         | 0.1  | 0.2       | 0.2  | 0.4  |
| 1456               | 1454             | $\alpha$ -Humulene               | -         | -    | -           | 0.1  | 0.1       | 0.1  | 0.1  |
| 1465               | 1463             | $\gamma$ -Decalactone            | -         | -    | -           | 0.1  | tr        | -    | 0.1  |
| 1479               | 1480             | Germacrene D                     | 0.1       | -    | -           | 0.7  | 0.4       | 1.0  | 0.9  |
| 1485               | 1483             | Phenylethyl 2-methylbutyrate     | 0.1       | 0.1  | -           | 0.1  | 0.1       | 0.1  | 0.1  |
| 1489               | 1489             | ß-Selinene                       | -         | -    | -           | 01   | tr        | 0.1  | 0.1  |
| 1490               | 1493             | Phenylethyl 3-methylbutanoate    | -         | -    | -           | -    | -         | -    | 0.1  |
| 1537               | 1540             | Selina-4(15) 7(11)-diene         | -         | -    | -           | _    | _         | 0.1  | -    |
| 1542               | 1541             | $(F)$ - $\alpha$ -Bisabolene     | tr        | 0.1  | tr          | _    | _         | -    | _    |
| 1549               | 1549             | a-Flemol                         | -         | -    | -           | _    | _         | _    | 0.1  |
| 1551               |                  | 7-Hydroxypiperitone <sup>a</sup> | -         | 03   | 03          | _    | _         | _    | -    |
| 1560               | 1557             | Cermacrene B                     | 13        | 0.0  | 0.0         | 45   | 26        | 64   | 93   |
| 1574               | 1572             | Citronellyl 2-methylbutyrate     | 0.1       | 0.2  | 0.4         | -    | 0.1       | 0.4  | 0.1  |
| 1586               | 1587             | Carvonbyllene ovide              | 0.1<br>tr | 0.4  | 0.0         | _    | 0.1<br>tr | 0.1  | 0.1  |
| 1596               | 1596             | Coranyil 2-methylbutyrate        | ti<br>tr  | 0.1  | 0.4         | _    | ti<br>tr  | 0.1  |      |
| 1633               | 2632             | Tetracosanal                     | 0.2       | 0.1  | 0.1         | 0.1  | 01        | 0.1  | _    |
| 1654               | 16/19            | 3-Butyl phthalide                | 0.2       | 0.2  | 0.1         | 0.1  | 0.1       | 0.1  | _    |
| 1668               | 1649             | (2F 67)-Farnesol                 | - 2 1     | 11   | 2.5         | 0.2  | 05        | 03   | -    |
| 1670               | 1669             | (27)-Butylidene phthalide        | 0.5       | 2.1  | 2.5         | 0.2  | 0.3       | 0.5  | - 11 |
| 1675               | 1674             | v Dodocalactoro                  | 0.0       | 2.1  | <i>∠</i> .1 | 0.4  | 0.5<br>tr | 0.5  | 1.1  |
| 1673               | 1684             | (2Z.6Z)-Farnesal                 | -<br>tr   | 0.1  | 0.2         | -    | -         | -    | -    |
|                    | 1001             | (,·_, i uiiteoui                 |           | 0.1  | ÷:=         |      |           |      |      |

| <b>RI</b> <sub>calc</sub> | RI <sub>db</sub> | Compound                                             | Ln#1 | Ln#2 | Ln#3 | Ln#4 | Ln#5 | Ln#6 | Ln#7 |
|---------------------------|------------------|------------------------------------------------------|------|------|------|------|------|------|------|
| 1693                      | 1692             | (2Z,6Z)-Farnesol                                     | 0.1  | -    | -    | -    | -    | -    | -    |
| 1707                      | 1705             | 14-Hydroxy-4,5-dihydrocaryophyllene                  | tr   | -    | -    | -    | -    | -    | -    |
| 1713                      | 1716             | (2E,6E)-Farnesol                                     | -    | 0.1  | 0.1  | -    | -    | -    | -    |
| 1714                      | 1712             | (Z)-Sedanenolide                                     | 0.2  | -    | -    | -    | 0.3  | 0.5  | -    |
| 1719                      | 1719             | (3É)-Butylidene phthalide                            | 0.2  | 0.6  | 1.4  | 0.3  | -    | -    | 0.4  |
| 1722                      | 1722             | 3-Isobutylidene phthalide                            | -    | -    | 2.8  | 0.2  | -    | -    | -    |
| 1728                      | 1730             | (Z)-Ligustilide                                      | 17.4 | 8.6  | 5.6  | 33.2 | 22.4 | 33.0 | 47.1 |
| 1772                      | 1772             | α-Costol                                             | -    | -    | 0.3  | 0.2  | 0.1  | 0.4  | -    |
| 1788                      | 1790             | (E)-Ligustilide                                      | 0.9  | 0.2  | 0.2  | 2.9  | 2.0  | 4.8  | 1.8  |
| 1807                      |                  | Unidentified oxygenated sesquiterpenoid <sup>c</sup> | 0.5  | 2.2  | 1.3  | 0.6  | 0.3  | 0.8  | 0.9  |
| 1933                      | 1928             | Methyl linolenate                                    | tr   | 0.1  | -    | -    | -    | -    | -    |
| 1959                      | 1958             | Palmític acid                                        | 0.2  | 0.4  | 0.3  | -    | -    | -    | -    |
| 2004                      | 2005             | Senkyunolide H                                       | -    | 2.6  | 1.8  | -    | -    | -    | -    |
| 2036                      | 2037             | (Z)-Falcarinol                                       | 0.1  | -    | -    | -    | -    | -    | -    |
| 2128                      | 2128             | (Z,Z)-Linoleic acid                                  | 0.1  | -    | -    | -    | -    | -    | -    |
| 2300                      | 2300             | Tricosane                                            | 0.1  | 0.2  | 0.1  | -    | -    | -    | -    |
| 2439                      | 2442             | 2-Methyltetracosane                                  | -    | -    | 1.2  | -    | -    | -    | -    |
| 2500                      | 2500             | Pentacosane                                          | 0.3  | 0.3  | 0.4  | 0.1  | 0.1  | 0.1  | tr   |
| 2700                      | 2700             | Heptacosane                                          | 0.2  | 0.2  | 0.2  | -    | -    | -    | -    |
| 2800                      | 2800             | Octacosane                                           | tr   | -    | -    | -    | -    | -    | -    |
| 2838                      | 2833             | Hexacosanal                                          | 0.7  | -    | -    | -    | -    | -    | -    |
|                           |                  | Monoterpene hydrocarbons                             | 69.4 | 57.2 | 51.7 | 49.7 | 65.6 | 42.0 | 31.6 |
|                           |                  | Oxygenated monoterpenoids                            | 2.7  | 13.1 | 14.8 | 1.2  | 1.6  | 1.4  | 0.6  |
|                           |                  | Sesquiterpene hydrocarbons                           | 2.3  | 1.1  | 1.6  | 9.3  | 5.5  | 13.4 | 15.2 |
|                           |                  | Oxygenated sesquiterpenoids                          | 2.2  | 1.3  | 3.5  | 0.4  | 0.6  | 0.8  | 0.1  |
|                           |                  | Benzenoid aromatics                                  | 19.2 | 13.4 | 14.6 | 37.0 | 24.8 | 38.4 | 1.7  |
|                           |                  | Others                                               | 2.5  | 4.3  | 4.7  | 0.7  | 0.6  | 1.1  | 49.2 |
|                           |                  | Total identified                                     | 98.3 | 90.4 | 90.8 | 98.3 | 98.7 | 97.2 | 98.3 |

Table 7. Cont.

 $RI_{calc}$  = retention index calculated with respect to a homologous series of *n*-alkanes on a ZB-5ms column.  $RI_{db}$  = reference retention index values obtained from the databases. Ln = *Lomatium nudicaule*. tr = trace (< 0.05%). - = not observed. <sup>a</sup> Reference RI not available, identification tentative. <sup>b</sup> MS(EI): 150 (48%), 106 (63%), 105 (44%), 78 (100%), 77 (45%), 52 (40%), 51 (42%), 49 (34%). <sup>c</sup> MS(EI): 222 (12%), 178 (9%), 166 (11%), 151 (17%), 137 (16%), 123 (17%), 110 (17%), 95 (20%), 91 (16%), 83 (18%), 81 (24%), 67 (16%), 55 (100%), 53 (31%), 43 (14%), 41 (19%).

#### 2.7. Lomatium papilioniferum (Lomatium grayi Complex)

A total of eight samples of *L. papilioniferum* were collected from north-central Oregon, along the Columbia River (four samples), and from western Idaho (four samples). The plants gave colorless to yellow essential oils (0.20–3.33% yield). The essential oil compositions showed notable differences between the Oregon samples and the Idaho samples (Table 8). Essential oils from both collection locations were generally rich in *p*-cymene (3.1–47.8% and 20.4–22.9%) and  $\gamma$ -terpinene (0.1–30.9% and 7.3–15.1%) for the Oregon and Idaho samples, respectively. However, sedanenolide (1.5–10.8%), myrcene (3.1–27.5%), and (*E*)- $\beta$ -ocimene (0.7–7.2%) were relatively abundant in the Oregon samples but were either not observed (sedanenolide) or found in only small quantities (myrcene and (*E*)- $\beta$ -ocimene) in the Idaho samples. Conversely, 2-methyl-5-(1,2,2-trimethylcyclopentyl)phenol (24.9–31.5%) and cuparene (3.5–6.0%) were abundant in the Idaho samples but not observed in the Oregon samples.

Based on the morphological characteristics as well as the geographical ranges suggested by Alexander et al. [13], the *L. grayi* samples in this work were identified as *L. papilioniferum*. Dev and co-workers [24] analyzed three taxa of the *L. grayi* complex, *L. grayi* var. *grayi*, *L. grayi* var. *depauparatum*, and *L. grayi* "new variety", which is presumably *L. papilioniferum* based on the location of the collection site (northern Nevada). In order to compare the chemical compositions of the *L. grayi* complex (in this work and [24]), both HCA and PCA were carried out (Figures 12 and 13).



**Figure 12.** Dendrogram obtained by hierarchical cluster analysis (HCA) of essential oil compositions (major essential oil components) of members of the *Lomatium grayi* complex. Lpap (OR) = *Lomatium papilioniferum* from northern Oregon, Lpap (ID) = *Lomatium papilioniferum* from western Idaho, Lpap(Dev) = *Lomatium "new species" (L. papilioniferum)* from reference [24], Lgg(Dev) = *Lomatium grayi* var. *grayi* from reference [24], Lgd(Dev) = *Lomatium grayi* var. *depauparatum* from reference [24].

| RIcale | RLab | Compound                              | Lpap#1 | Lpap#2 | Lpap#3 | Lpap#4 | Lpap#5 | Lpap#6 | Lpap#7 | Lpap#8 |
|--------|------|---------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| calc   | ub   |                                       | (OK)   | (OR)   | (OK)   | (OR)   | (ID)   | (ID)   | (ID)   | (ID)   |
| 808    | 806  | Hexanal                               | -      | -      | -      | -      | -      | 0.1    | -      | -      |
| 849    | 849  | (2E)-Hexenal                          | 0.2    | tr     | tr     | tr     | -      | -      | -      | -      |
| 908    | 906  | Heptanal                              | -      | -      | -      | -      | 0.1    | 0.2    | 0.1    | 0.1    |
| 920    | 921  | Hashishene                            | tr     | -      | -      | -      | -      | -      | -      | -      |
| 922    | 923  | Tricyclene                            | tr     | tr     | tr     | tr     | -      | -      | -      | -      |
| 925    | 925  | α-Thujene                             | tr     | 0.1    | 0.1    | 0.1    | -      | -      | -      | -      |
| 933    | 933  | α-Pinene                              | 0.7    | 1.8    | 2.1    | 2.1    | tr     | tr     | 0.1    | 0.2    |
| 947    | 948  | α-Fenchene                            | tr     | -      | -      | -      | -      | -      | -      | -      |
| 949    | 950  | Camphene                              | 1.7    | 0.8    | 1.0    | 0.7    | 0.2    | tr     | 0.8    | 0.8    |
| 951    | 955  | Propylbenzene                         | -      | -      | -      | -      | tr     | 0.5    | 0.1    | 0.7    |
| 965    | 963  | 2-Methyl-(3E)-octen-5-yne             | 0.2    | -      | -      | -      | -      | -      | 0.2    | 0.2    |
| 970    | 972  | Tetrahydrofurfuryl acetate            | 0.1    | -      | -      | tr     | -      | -      | -      | -      |
| 972    | 971  | Sabinene                              | 0.2    | 0.7    | 0.9    | 0.6    | -      | -      | -      | -      |
| 978    | 978  | β-Pinene                              | 0.1    | 0.3    | 0.3    | 0.4    | -      | tr     | tr     | tr     |
| 984    | 984  | 6-Methylhept-5-en-2-one               | -      | -      | -      | -      | tr     | 0.1    | 0.1    | tr     |
| 989    | 989  | Myrcene                               | 27.5   | 5.4    | 6.8    | 3.1    | 0.2    | 0.3    | 0.4    | 0.6    |
| 990    | 990  | Dehydro-1,8-cineole                   | -      | tr     | tr     | tr     | -      | -      | -      | -      |
| 1000   | 1000 | δ-2-Carene                            | tr     | tr     | tr     | 0.1    | -      | -      | -      | -      |
| 1005   | 1004 | <i>p</i> -Mentha-1(7),8-diene         | 0.1    | 0.1    | 0.1    | 0.1    | -      | -      | -      | -      |
| 1007   | 1007 | α-Phellandrene                        | -      | 1.1    | 1.1    | -      | tr     | tr     | tr     | tr     |
| 1009   | 1009 | δ-3-Carene                            | tr     | 0.4    | 0.4    | 0.1    | tr     | tr     | tr     | tr     |
| 1017   | 1017 | α-Terpinene                           | -      | 0.3    | 0.3    | -      | 0.1    | 0.2    | 0.3    | 0.3    |
| 1019   | 1016 | Tetrahydro-2-furanmethanol acetate    | -      | -      | -      | 0.1    | -      | -      | -      | -      |
| 1025   | 1025 | <i>p</i> -Cymene                      | 6.0    | 3.1    | 2.6    | 47.8   | 22.9   | 20.9   | 20.4   | 21.1   |
| 1029   | 1030 | Limonene                              | 2.4    | 1.6    | 2.0    | 3.0    | 0.2    | 0.2    | 0.6    | 0.6    |
| 1032   | 1031 | β-Phellandrene                        | 0.8    | 23.8   | 23.2   | 5.7    | tr     | tr     | tr     | tr     |
| 1032   | 1032 | 1,8-Cineole                           | -      | -      | -      | -      | tr     | tr     | tr     | tr     |
| 1033   | 1033 | Benzyl alcohol                        | -      | -      | -      | -      | -      | tr     | tr     | tr     |
| 1035   | 1034 | $(Z)$ - $\beta$ -Ocimene              | 0.2    | 0.2    | 0.2    | 0.2    | tr     | -      | tr     | tr     |
| 1043   | 1043 | Phenylacetaldehyde                    | -      | -      | -      | -      | tr     | tr     | tr     | tr     |
| 1046   | 1046 | $(E)$ - $\beta$ -Ocimene              | 0.7    | 7.2    | 7.2    | 2.9    | 0.3    | tr     | 0.1    | tr     |
| 1051   | 1051 | 2,3,6-Trimethylhepta-1,5-diene        | 0.3    | -      | -      | -      | -      | -      | -      | -      |
| 1058   | 1058 | $\gamma$ -lerpinene                   | 0.1    | 30.9   | 28.6   | 3.1    | 7.3    | 9.1    | 10.3   | 15.1   |
| 1070   | 1069 | <i>cis</i> -Linalool oxide (furanoid) | -      | -      | -      | 0.2    | -      | -      | -      | -      |
| 1071   | 1072 | Dihydromyrcenol                       | 0.2    | -      | -      | -      | -      | -      | -      | -      |
| 1085   | 1086 | Terpinolene                           | -      | 2.5    | 2.4    | -      | 0.2    | 0.2    | 0.3    | 0.4    |
| 1086   | 1086 | trans-Linalool oxide (furanoid)       | -      | -      | -      | 0.1    | -      | -      | -      | -      |
| 1090   | 1090 | 6,7-Epoxymyrcene                      | 0.7    | -      | -      | 0.4    | -      | -      | -      | -      |
| 1090   | 1091 | <i>p</i> -Cymenene                    | -      | -      | -      | -      | tr     | 0.1    | tr     | tr     |
| 1091   | 1091 | Koseturan                             | 0.4    | -      | -      | 0.1    | -      | -      | -      | -      |
| 1095   | 1097 | $\alpha$ -rinene oxide                | 0.1    | -      | -      | 0.1    | -      | -      | -      | -      |
| 1098   | 1098 | Ferillene                             | 0.6    | -      | -      | -      | -      | -      | -      | -      |
| 1100   | 1101 |                                       | 0.5    | 1.4    | 1.8    | 0.4    | tr     | tr     | 0.1    | tr     |
| 1103   | 1102 | 6-Methylhepta-3,5-dien-2-one          | 0.4    | -      | -      | 0.1    | tr     | tr     | tr     | tr     |

Table 8. Chemical compositions (%) of *Lomatium papilioniferum* J.A. Alexander & Whaley from northern Oregon and western Idaho.

| Tabl | e 8. | Cont.  |
|------|------|--------|
|      | •••  | 00.000 |

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                                                   | Lpap#1<br>(OR) | Lpap#2<br>(OR) | Lpap#3<br>(OR) | Lpap#4<br>(OR) | Lpap#5<br>(ID) | Lpap#6<br>(ID) | Lpap#7<br>(ID) | Lpap#8<br>(ID) |
|--------------------|------------------|------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1105               | 1107             | Nonanal                                                    | 0.1            | -              | -              | -              | tr             | tr             | tr             | tr             |
| 1120               | 1119             | Myrcenol                                                   | 0.2            | -              | -              | -              | -              | -              | -              | -              |
| 1121               | 1121             | Isopentylbenzene                                           | -              | -              | -              | -              | -              | tr             | tr             | tr             |
| 1122               | 1121             | (3E,5E)-1,3,5-Undecatriene                                 | -              | -              | -              | -              | -              | tr             | tr             | tr             |
| 1124               | 1124             | <i>cis-p</i> -Menth-2-en-1-ol                              | -              | 0.1            | 0.1            | 0.1            | -              | -              | -              | -              |
| 1127               | 1126             | α-Ċampholenal                                              | -              | -              | -              | 0.1            | -              | -              | -              | -              |
| 1129               | 1130             | (Z)-Myroxide                                               | 0.1            | -              | -              | tr             | -              | -              | -              | -              |
| 1133               | 1132             | <i>cis</i> -Limonene oxide                                 | -              | -              | -              | tr             | -              | -              | -              | -              |
| 1137               | 1138             | <i>trans</i> -Limonene oxide                               | -              | -              | -              | 0.1            | -              | -              | -              | -              |
| 1139               | 1139             | (E)-Myroxide                                               | 0.5            | -              | -              | 0.4            | -              | -              | -              | -              |
| 1142               | 1142             | Epoxyterpinolene                                           | -              | 0.1            | 0.1            | -              | -              | -              | -              | -              |
| 1143               | 1142             | <i>trans-p-</i> Menth-2-en-1-ol                            | -              | -              | -              | 0.2            | -              | -              | -              | -              |
| 1147               | 1149             | Camphor                                                    | 0.2            | -              | -              | 0.1            | -              | -              | -              | -              |
| 1156               | 1156             | Pentylbenzene                                              | 0.1            | tr             | tr             | 0.5            | -              | -              | -              | -              |
| 1156               | 1156             | Camphene hydrate                                           | 0.2            | -              | -              | -              | -              | -              | tr             | tr             |
| 1156               | 1156             | Pentylbenzene                                              | -              | -              | -              | -              | tr             | 0.1            | -              | tr             |
| 1157               | 1161             | 5-Pentylcyclohexa-1,3-diene                                | -              | 0.9            | 1.0            | -              | 0.1            | 0.2            | 0.1            | 0.1            |
| 1159               | 1163             | (2E)-Nonenal                                               | -              | -              | -              | -              | -              | tr             | -              | tr             |
| 1162               |                  | 2-Propylphenyl methyl ether <sup>a</sup>                   | -              | -              | -              | -              | -              | 0.3            | -              | 0.1            |
| 1162               | 1162             | ( <i>E</i> , <i>E</i> )-2,6-Dimethyl-3,5,7-octatriene-2-ol | -              | tr             | tr             | 0.6            | 0.1            | -              | tr             | -              |
| 1169               | 1169             | Rosefuran epoxide                                          | 0.1            | -              | -              | 0.1            | -              | -              | -              | -              |
| 1172               | 1173             | Borneol                                                    | 0.1            | -              | -              | -              | -              | -              | -              | -              |
| 1174               | 1175             | (3E,5Z)-1,3,5-Undecatriene                                 | -              | tr             | tr             | -              | -              | -              | -              | -              |
| 1180               | 1180             | Terpinen-4-ol                                              | 0.1            | 0.1            | 0.1            | 0.1            | tr             | -              | 0.1            | 0.1            |
| 1185               | 1188             | <i>p</i> -Methylacetophenone                               | tr             | -              | -              | -              | -              | -              | -              | -              |
| 1186               | 1189             | p-Cymen-8-ol                                               | -              | -              | -              | -              | 0.1            | 0.6            | 0.1            | tr             |
| 1187               | 1187             | Cryptone                                                   | 0.7            | 0.2            | 0.2            | 2.7            | -              | -              | -              | -              |
| 1189               | 1195             | trans-4-Caranone                                           | -              | -              | -              | 0.1            | -              | -              | -              | -              |
| 1195               | 1195             | α-Terpineol                                                | 0.2            | tr             | tr             | -              | tr             | -              | tr             | tr             |
| 1197               | 1205             | cis-4-Čaranone                                             | -              | tr             | tr             | 0.3            | -              | -              | -              | -              |
| 1203               | 1202             | <i>cis</i> -Sabinol                                        | -              | tr             | tr             | -              | -              | -              | -              | -              |
| 1207               | 1208             | Verbenone                                                  | -              | -              | -              | 0.1            | -              | -              | -              | -              |
| 1207               | 1208             | Decanal                                                    | 0.1            | -              | -              | -              | -              | -              | -              | -              |
| 1209               | 1209             | <i>trans</i> -Piperitol                                    | -              | -              | -              | tr             | -              | -              | -              | -              |
| 1209               | 1207             | (3E)-Octenyl acetate                                       | 0.2            | -              | -              | -              | -              | -              | -              | -              |
| 1210               | 1211             | Octyl acetate                                              | 0.1            | -              | -              | -              | -              | -              | -              | -              |
| 1223               | 1231             | trans-Chrysanthenyl acetate                                | -              | tr             | tr             | -              | -              | -              | -              | -              |
| 1223               | 1224             | Thymyl methyl ether                                        | -              | -              | -              | -              | 0.3            | 0.2            | 0.2            | 0.3            |
| 1238               | 1238             | Carvacryl methyl ether                                     | -              | -              | -              | -              | 0.4            | 0.3            | 0.4            | 0.5            |
| 1242               | 1242             | Cuminaldehyde                                              | -              | -              | -              | 0.1            | -              | -              | -              | -              |
| 1254               | 1254             | Piperitone                                                 | 0.7            | 3.3            | 4.1            | 5.9            | -              | -              | -              | -              |
| 1265               | 1265             | (2E)-Decenal                                               | -              | -              | -              | 0.2            | -              | -              | -              | -              |
| 1273               | 1271             | 1-Decanol                                                  | 2.2            | -              | -              | -              | -              | -              | -              | -              |
| 1283               | 1282             | Bornyl acetate                                             | 0.1            | -              | -              | -              | 0.7            | 0.1            | 3.9            | 2.9            |

| Tabl | e | 8. | Cont. |
|------|---|----|-------|
| 140  | - | •• | CO    |

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                                               | Lpap#1<br>(OR) | Lpap#2<br>(OR) | Lpap#3<br>(OR) | Lpap#4<br>(OR) | Lpap#5<br>(ID) | Lpap#6<br>(ID) | Lpap#7<br>(ID) | Lpap#8<br>(ID) |
|--------------------|------------------|--------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1285               | 1287             | Limonene dioxide                                       | -              | -              | -              | 0.1            | -              | -              | -              | -              |
| 1286               | 1287             | iso-Bornyl acetate                                     | -              | -              | -              | -              | -              | -              | tr             | tr             |
| 1289               | 1289             | Thymol                                                 | -              | 0.1            | 0.1            | 0.1            | tr             | tr             | tr             | tr             |
| 1290               | 1289             | (9Ź)-Tetradecenal                                      | 0.1            | -              | -              | -              | -              | -              | -              | -              |
| 1292               | 1291             | <i>p</i> -Cymen-7-ol                                   | -              | -              | -              | 0.2            | -              | -              | -              | -              |
| 1298               | 1300             | Carvacrol                                              | -              | tr             | tr             | 0.1            | tr             | tr             | tr             | 0.1            |
| 1314               | 1321             | 2-Methyl-5-(propan-2-ylidene)cyclohexane-1,4-diol      | -              | -              | -              | 0.2            | -              | -              | -              | -              |
| 1323               | 1318             | 4-Hydroxycryptone                                      | -              | -              | -              | 0.1            | -              | -              | -              | -              |
| 1339               | 1339             | 3-Oxo- <i>p</i> -Menth-1-en-7-al                       | -              | -              | -              | 0.1            | -              | -              | -              | -              |
| 1342               | 1343             | 2-(2,5-Ďimethylphenyl)propanal                         | -              | -              | -              | 0.2            | -              | -              | -              | -              |
| 1350               | 1352             | α-Longipinene                                          | -              | -              | -              | -              | 0.1            | 0.1            | 0.1            | 0.2            |
| 1369               | 1367             | Cyclosativene                                          | -              | -              | -              | -              | 0.1            | 0.1            | 0.1            | 0.2            |
| 1372               | 1370             | <i>iso</i> -Ledene                                     | -              | -              | -              | -              | tr             | 0.1            | tr             | tr             |
| 1374               | 1372             | Longicyclene                                           | -              | -              | -              | -              | 0.3            | 0.1            | 0.3            | 0.3            |
| 1375               | 1375             | α-Copaene                                              | -              | -              | -              | -              | -              | 0.1            | 0.1            | 0.1            |
| 1382               | 1383             | $2-epi-\alpha$ -Funebrene                              | -              | -              | -              | -              | 0.4            | 0.4            | 0.4            | 0.5            |
| 1384               | 1385             | α-Duprezianene                                         | -              | -              | -              | -              | 0.9            | 0.7            | 0.8            | 0.8            |
| 1390               | 1390             | β-Elemene                                              | -              | -              | -              | 0.1            | -              | -              | -              | -              |
| 1392               | 1392             | (Z)-Jasmone                                            | -              | tr             | -              | 0.1            | -              | -              | -              | -              |
| 1399               | 1403             | Methyl eugenol                                         | -              | -              | -              | -              | 0.7            | 4.0            | 0.1            | 0.1            |
| 1402               | 1403             | α-Funebrene                                            | -              | -              | -              | -              | 0.3            | 0.3            | 0.3            | 0.3            |
| 1405               | 1403             | di <i>-eni-</i> α-Cedrene                              | -              | -              | -              | -              | 0.2            | 0.1            | 0.1            | 0.1            |
| 1408               | 1408             | Isopropyl 4-ethylbenzoate                              | -              | -              | -              | 0.1            | -              | -              | -              | -              |
| 1408               | 1409             | Decyl acetate                                          | 6.0            | -              | -              | -              | -              | -              | -              | -              |
| 1409               | 1411             | Longifolene                                            | -              | -              | -              | -              | 3.6            | 1.6            | 3.3            | 3.5            |
| 1416               | 1414             | α-Cedrene                                              | -              | -              | -              | -              | 0.2            | 0.1            | 0.1            | 0.1            |
| 1417               | 1416             | 2-eni-B-Funebrene                                      | -              | -              | -              | -              | 0.3            | 0.3            | 04             | 0.4            |
| 1418               | 1417             | $(F)$ - $\beta$ - $C$ arvonhyllene                     | 0.1            | tr             | 0.1            | -              | 0.2            | 0.0            | 0.1            | 0.1            |
| 1424               | 1423             | B-Cedrene                                              | -              | -              | -              | _              | 0.1            | 0.1            | 0.1            | 0.1            |
| 1426               | 1428             | ß-Duprezianene                                         | -              | -              | -              | _              | 0.1            | 0.1            | 0.1            | 0.1            |
| 1428               | 1427             | v-Flemene                                              | -              | tr             | tr             | -              | -              | -              | -              | -              |
| 1432               | 1432             | trans-α-Bergamotene                                    | 0.1            | $\vec{02}$     | 02             | -              | -              | -              | -              | -              |
| 1435               | 1433             | <i>cis</i> -Thuiopsene                                 | -              | -              | -              | _              | 0.1            | 0.1            | 0.1            | 0.1            |
| 1437               | 1437             | iso-Bazzanene                                          | -              | -              | -              | -              | 0.1            | 0.1            | 0.1            | 0.1            |
| 1441               | 1442             | Guaia-6 9-diene                                        | -              | _              | _              | _              | 0.1            | -              | -              | -              |
| 1447               | 1447             | Geranvlacetone                                         | -              | _              | _              | _              | 0.1            | 07             | 0.4            | 0.4            |
| 1450               | 1449             | x-Himachalene                                          | 12             | -              | _              | _              | 0.6            | 0.2            | 0.1            | 0.1            |
| 1451               | 1451             | (F)-B-Farnesene                                        | 0.1            | tr             | tr             | _              | 15             | 11             | 17             | 21             |
| 1401               | 1401             | $122\alpha$ 3346788 $\alpha$ -Decabydro-2 $\alpha$ 78- | 0.1            | u              | u              |                | 1.0            | 1.1            | 1.7            | 2.1            |
| 1453               | 1450             | trimathylaconanthylanc                                 | -              | -              | -              | -              | -              | 0.6            | -              | 0.7            |
| 1455               | 1/5/             | a Humulono                                             | 1 /            | + -            | +              |                |                |                |                |                |
| 1400               | 1434             | alla Aromadondrona                                     | 1.4            | u              | u              | -              | -              | -              | -              | -              |
| 1437               | 1437             | Amoundaenarene                                         | 0.5            | -              | -              | -              | -              | -              | -              | -              |
| 1437               | 1401             | Amorpha-4,11-ciene                                     | -              | -              | -              | -              | 1.1            | 0.6            | 0.7            | 0.0            |

| Table 8 | <b>3.</b> Cont. |  |
|---------|-----------------|--|
|---------|-----------------|--|

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                                               | Lpap#1<br>(OR) | Lpap#2<br>(OR) | Lpap#3<br>(OR) | Lpap#4<br>(OR) | Lpap#5<br>(ID) | Lpap#6<br>(ID) | Lpap#7<br>(ID) | Lpap#8<br>(ID) |
|--------------------|------------------|--------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1459               | 1456             | 7-Isopropenyl-1-methyl-4-<br>methylenedecahydroazulene | -              | -              | -              | -              | 0.1            | 0.1            | 0.1            | 0.1            |
| 1464               | 1463             | γ-Decalactone                                          | -              | 0.1            | 0.1            | 0.1            | -              | -              | -              | -              |
| 1466               | 1467             | β-Acoradiene                                           | -              | -              | -              | -              | 0.1            | tr             | -              | -              |
| 1473               | 1473             | γ-Selinene                                             | -              | -              | -              | -              | -              | tr             | -              | 0.1            |
| 1473               | 1474             | 10 <i>-epi</i> -β-Acoradiene                           | -              | -              | -              | -              | 0.1            | -              | -              | -              |
| 1474               | 1476             | I-Dodecanol                                            | 0.3            | -              | -              | -              | -              | -              | -              | -              |
| 1474               | 1474             | $4-epi-\alpha$ -Acoradiene                             | -              | -              | -              | -              | 0.2            | 0.1            | 0.1            | 0.1            |
| 1476               | 1477             | trans-Cadina-1(6),4-diene                              | -              | -              | -              | -              | 0.2            | 0.1            | -              | 0.1            |
| 1470               | 1479             | a-Amorphene<br>ay Himachalono                          | 0.2            | -              | -              | -              | 0.0            | ur             | 0.2            | 0.5            |
| 1470               | 1480             | Germacrene D                                           |                | 0.6            | 0.6            | -              | -              | -              | 0.2            | -              |
| 1480               | 1480             | ar-Curcumene                                           | -              | -              | -              | -              | 0.8            | 0.6            | 0.7            | 0.6            |
| 1485               | 1488             | 4- <i>evi</i> -(Z)-Dihydroagarofuran                   | -              | -              | -              | -              | 0.4            | -              | -              | -              |
| 1488               | 1487             | β-Selinene                                             | -              | -              | -              | -              | -              | 0.1            | 0.1            | 0.1            |
| 1490               | 1491             | δ-Decalactone                                          | -              | 0.1            | 0.1            | 0.1            | -              | -              | -              | -              |
| 1490               | 1489             | $(Z,E)$ - $\alpha$ -Farnesene                          | -              | -              | -              | -              | 0.2            | 0.2            | 0.1            | 0.4            |
| 1498               | 1499             | Benzyl tiglate                                         | -              | tr             | -              | 0.1            | -              | -              | -              | -              |
| 1498               | 1497             | α-Muurolene                                            | 0.2            | -              | -              | -              | tr             | 0.1            | 0.1            | 0.1            |
| 1500               | 1503             | β-Himachalene                                          | -              | -              | -              | -              | 0.3            | 0.1            | 0.3            | 0.3            |
| 1503               | 1504             | α-Cuprenene                                            | -              | -              | -              | -              | 0.3            | 0.1            | 0.2            | 0.3            |
| 1506               | 1507             | Geranyl isobutyrate                                    | -              | 0.1            | 0.1            | -              | -              | -              | -              | -              |
| 1506               | 1508             | β-Bisabolene                                           | 0.1            | -              | -              | -              | -              | -              | -              | -              |
| 1506               | 1506             | α-Chamigrene                                           | -              | -              | -              | -              | 1.8            | 2.1            | 1.0            | 1.9            |
| 1508               | 1505             | Cuparene                                               | -              | -              | -              | -              | 6.0            | 4.1            | 4.9            | 3.5            |
| 1512               | 1512             | B Cupiono                                              | 0.5            | ur             | ur             | -              | -              | -              | -              | -              |
| 1518               | 1525             | β-Guainene<br>δ-Cadinene                               | 0.7            | -<br>tr        | -<br>tr        | -              | $^{-}$         | 03             | 0.5            | 03             |
| 1510               | 1510             | trans-Calamenene                                       | 0.1            | u<br>-         | u<br>-         | -              | 0.2            | 0.3            | 0.5<br>tr      | 0.5            |
| 1522               | 1521             | Zonarene                                               | -              | -              | -              | _              | -              | 0.1            | 01             | -              |
| 1526               | 1528             | $(E)$ - $\gamma$ -Bisabolene                           | -              | -              | -              | -              | 0.2            | 0.1            | 0.2            | 0.2            |
| 1528               | 1528             | Kessane                                                | -              | tr             | tr             | 0.1            | -              | 0.1            | tr             | -              |
| 1534               | 1535             | γ-Cuprenene                                            | -              | -              | -              | -              | 1.1            | 0.6            | 0.8            | 0.7            |
| 1541               | 1541             | α-Calacorene                                           | -              | -              | -              | -              | 0.5            | 0.1            | 0.2            | 0.2            |
| 1546               | 1548             | Elemicin                                               | -              | -              | -              | -              | -              | 0.1            | -              | -              |
| 1547               | 1549             | α-Agarofuran                                           | -              | -              | -              | -              | -              | 0.1            | 0.1            | 0.1            |
| 1555               | 1555             | (Z)-Dihydronerolidol                                   | 0.4            | -              | -              | -              | -              | -              | -              | -              |
| 1558               | 1557             | Germacrene B                                           | -              | tr             | tr             | -              | -              | -              | -              | -              |
| 1559               | 1560             | (E)-Nerolidol                                          | 4.6            | tr             | tr             | -              | 0.5            | 0.5            | 0.6            | 0.6            |
| 1569               | 1570             | (E)-Dihydronerolidol                                   | 0.2            | -              | -              | -              | -              | -              | -              | -              |
| 1575               | 1575             | Caryolan-8-ol                                          | 0.2            | -              | -              | -              | 0.1            | tr             | -              | -              |
| 1576               | 1576             | Spathulenol                                            | -              | tr             | tr             | -              | -              | -              | -              | -              |
| 1581               | 158/             | Caryophyllene oxide                                    | 0.2            | -              | -              | 0.6            | -              | -              | -              | -              |
| 1582               | 1384             | 10-epi-juneoi                                          | -              | -              | -              | -              | -              | 0.4            | 0.1            | 0.3            |

| Tabl | e   | 8. ( | Cont. |
|------|-----|------|-------|
| Iuvi | · · | •••  | com   |

| RI <sub>calc</sub> | RI <sub>db</sub> | Compound                                      | Lpap#1<br>(OR) | Lpap#2<br>(OR) | Lpap#3<br>(OR) | Lpap#4<br>(OR) | Lpap#5<br>(ID) | Lpap#6<br>(ID) | Lpap#7<br>(ID) | Lpap#8<br>(ID) |
|--------------------|------------------|-----------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1594               | 1595             | Geranyl 2-methylbutyrate                      | 0.2            | 0.1            | 0.2            | -              | -              | -              | -              | -              |
| 1596               | 1593             | Guaiol                                        | -              | -              | -              | -              | 1.2            | 0.3            | 0.2            | 0.1            |
| 1598               | 1596             | Humulene epoxide I                            | 0.4            | -              | -              | -              | -              | -              | -              | -              |
| 1602               | 1602             | Geranyl isovalerate                           | -              | 0.1            | 0.1            | -              | -              | -              | -              | -              |
| 1602               | 1601             | Longiborneol                                  | -              | -              | -              | -              | 0.2            | 0.1            | 0.1            | 0.2            |
| 1603               | 1604             | Humulol                                       | 8.4            | tr             | tr             | -              | -              | -              | -              | -              |
| 1606               | 1606             | Cedrol                                        | -              | -              | -              | -              | 0.6            | 0.7            | 0.5            | 0.5            |
| 1609               | 1611             | Humulene epoxide II                           | 3.8            | -              | -              | 0.3            | -              | -              | -              | -              |
| 1613               | 1612             | 5- <i>epi-7-epi</i> -β-Eudesmol               | -              | -              | -              | -              | 0.1            | -              | -              | -              |
| 1621               | 1624             | <i>epi-</i> γ-Eudesmol                        | 0.2            | -              | -              | -              | -              | -              | -              | -              |
| 1622               | 1624             | 10 <i>-epi-</i> γ-Eudesmol                    | -              | -              | -              | -              | 1.1            | 3.6            | 2.1            | 1.7            |
| 1625               | 1624             | Selin-6-en-4β-ol                              | 0.1            | -              | -              | -              | -              | -              | -              | -              |
| 1625               | 1631             | Eremoligenol                                  | -              | -              | -              | -              | 0.2            | 0.4            | 0.3            | 0.2            |
| 1627               | 1628             | 1 <i>-epi-</i> Cubenol                        | -              | -              | -              | -              | -              | 0.1            | 0.1            | -              |
| 1632               | 1633             | γ-Eudesmol                                    | -              | -              | -              | -              | 0.2            | 0.4            | 0.2            | 0.2            |
| 1638               | 1644             | allo-Aromadendrene epoxide                    | -              | 0.1            | 0.1            | -              | -              | -              | -              | -              |
| 1641               | 1641             | τ-Muurolol                                    | 0.1            | -              | -              | -              | -              | -              | -              | -              |
| 1648               | 1649             | 3-Butylphthalide                              | 2.2            | 0.8            | 0.8            | 5.1            | -              | -              | -              | -              |
| 1652               | 1646             | Agarospirol (=Hinesol)                        | 0.1            | -              | -              | -              | -              | -              | -              | -              |
| 1655               | 1652             | α-Eudesmol                                    | 0.2            | -              | -              | -              | -              | 2 5            | -              | -              |
| 1655               | 1657             | valerianol                                    | 0.2            | -              | -              | -              | 0.7            | 2.3            | 1.2            | 1.1            |
| 1654               | 1655             | 6 Eudosmol                                    | 0.5            | -              | -              | -              | 1.2            | -              | -              | 0.8            |
| 1655               | 1650             | 7 mi x Eudosmol                               | -              | -              | -              | -              | 1.2            | 2.1            | 1.1            | 0.0            |
| 1665               | 1664             | Bulnesol                                      | -              | -              | -              | _              | 0.8            | 0.5            | 0.2            | 0.1            |
| 1669               | 1671             | B-Bisabolol                                   | -              | -              | -              | -              | 0.0            | 0.1            | 0.1            | 01             |
| 1672               | 1673             | Cadalene                                      | _              | _              | _              | _              | 0.1            | -              | -              | -              |
| 1676               | 1674             | v-Dodecalactone                               | _              | _              | _              | 0.1            | -              | _              | _              | -              |
| 1678               | 1676             | 1-Tetradecanol                                | _              | _              | _              | -              | _              | 0.2            | _              | 0.1            |
| 1684               | 1686             | eni-α-Bisabolol                               | 0.2            | -              | -              | -              | -              | -              | -              | -              |
| 1686               | 1686             | α-Bisabolol                                   | 0.1            | -              | -              | -              | 10             | 0.2            | 18             | 0.1            |
| 1691               | 1686             | Octadec-(13Z)-enal                            | 0.3            | -              | -              | -              | -              | -              | -              | -              |
| 1712               | 1712             | Sedanenolide (=Senkvunolide A)                | 1.5            | 10.8           | 10.7           | 1.8            | -              | -              | -              | -              |
| 1728               | 1730             | (Z)-Ligustilide                               | -              | tr             | tr             | -              | -              | -              | -              | -              |
| 1756               | 1756             | Hexadec-(11E)-en-1-ol                         | 0.4            | -              | -              | -              | -              | -              | -              | -              |
| 1781               | 1776             | 2-Methyl-5-(1.2.2-trimethylcyclopentyl)phenol | _              | -              | -              | -              | 30.5           | 31.5           | 29.3           | 24.9           |
| 1794               | 1796             | Hexadec-(9Z)-enal                             | 0.3            | -              | -              | -              | -              | -              | -              | -              |
| 1802               |                  | Unidentified <sup>b</sup>                     | _              | -              | -              | -              | 0.8            | 0.7            | 1.8            | 1.3            |
| 1876               | 1878             | Hexadec-(2F)-enal                             | 0.5            | -              | -              | -              | -              | -              |                |                |
| 1932               | 1933             | Beverene                                      | 0.3            | tr             | tr             | -              | -              | -              | -              | -              |
| 1940               | 1938             | Hexadecanolact-16-one                         | -              | -              | -              | -              | 1.0            | 0.3            | 0.3            | 0.2            |
| 2035               | 2037             | (Z)-Falcarinol                                | -              | tr             | -              | -              | -              | -              | -              | -              |
| 2105               | 2106             | Phytol                                        | 0.1            | tr             | tr             | -              | -              | -              | _              | -              |
| 2300               | 2300             | Tricosane                                     | 0.5            | tr             | tr             | -              | -              | -              | -              | -              |
|                    |                  |                                               | 0.0            |                |                |                |                |                |                |                |

Table 8. Cont.

| <b>RI</b> <sub>calc</sub> | RI <sub>db</sub> | Compound                    | Lpap#1<br>(OR) | Lpap#2<br>(OR) | Lpap#3<br>(OR) | Lpap#4<br>(OR) | Lpap#5<br>(ID) | Lpap#6<br>(ID) | Lpap#7<br>(ID) | Lpap#8<br>(ID) |
|---------------------------|------------------|-----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 2500                      | 2500             | Pentacosane                 | 0.5            | 0.1            | tr             | tr             | -              | -              | -              | -              |
|                           |                  | Monoterpene hydrocarbons    | 40.6           | 80.5           | 79.3           | 69.9           | 31.4           | 30.9           | 33.2           | 39.2           |
|                           |                  | Oxygenated monoterpenoids   | 5.4            | 5.4            | 6.7            | 10.3           | 1.5            | 1.2            | 4.7            | 3.8            |
|                           |                  | Sesquiterpene hydrocarbons  | 4.8            | 0.7            | 0.9            | 0.1            | 23.2           | 15.6           | 18.9           | 20.3           |
|                           |                  | Oxygenated sesquiterpenoids | 19.7           | 0.1            | 0.1            | 0.9            | 39.1           | 43.4           | 37.6           | 30.9           |
|                           |                  | Diterpenoids                | 0.4            | traces         | traces         | 0.0            | 0.0            | 0.0            | 0.0            | 0.0            |
|                           |                  | Benzenoid aromatics         | 0.1            | traces         | traces         | 0.9            | 0.7            | 5.0            | 0.2            | 0.9            |
|                           |                  | Others                      | 16.8           | 12.9           | 12.8           | 10.5           | 1.6            | 1.6            | 1.1            | 1.0            |
|                           |                  | Total identified            | 87.7           | 99.6           | 99.7           | 92.4           | 97.3           | 97.6           | 95.7           | 96.1           |

 $RI_{calc}$  = retention index calculated with respect to a homologous series of *n*-alkanes on a ZB-5ms column.  $RI_{db}$  = reference retention index values obtained from the databases. Lpap = *Lomatium papilioniferum*. OR = collected from northern Oregon. ID = collected from western Idaho. tr = trace (< 0.05%). - = not observed. <sup>a</sup> Reference RI not available, identification tentative. <sup>b</sup> MS(EI): 220 (2%), 205 (3%), 136 (100%), 121 (90%), 107 (17%), 105 (15%), 93 (42%), 91 (23%), 79 (18%), 77 (10%), 67 (8%), 55 (10%), 41 (14%).

Biplot (axes F1 and F2: 73.15 %)



**Figure 13.** The bidimensional plot of the first two components (F1 and F2) from principal component analysis (PCA) of members of the *Lomatium grayi* complex, based on major components in their essential oils. Lpap (OR) = *Lomatium papilioniferum* from northern Oregon, Lpap (ID) = *Lomatium papilioniferum* from western Idaho, Lpap(Dev) = *Lomatium "new species"* (*L. papilioniferum*) from reference [24], Lgg(Dev) = *Lomatium grayi* var. *grayi* from reference [24], Lgd(Dev) = *Lomatium grayi* var. *depauparatum* from reference [24].

The HCA shows two major groupings (samples #1, #2, and #3 from Oregon and the three L. gravi samples from Dev et al. [24]). This group can be further divided into two groups, a limonene +  $\beta$ -phellandrene/sedanenolide/ $\gamma$ -terpinene group and a myrcene/limonene +  $\beta$ -phellandrene group. The second major group, with a very different chemical profile, is dominated by p-cymene and 2-methyl-5-(1,2,2trimethylcyclopentyl)phenol. It is not clear what factors are responsible for the chemical differences observed between the Oregon L. papilioniferum samples; these were collected on the same day (17 April 2023) from the same location (along the Columbia River in north-central Oregon). The four L. papilioniferum samples from Idaho, collected on the same day (21 May 2024) from the same location (western Idaho), showed very similar chemical profiles. The PCA verifies the HCA. There is a group that correlates strongly with limonene +  $\beta$ -phellandrene,  $\gamma$ -terpinene, and sedanenolide (Lpap#2, and #3, Lpap(Dev), and Lgg(Dev)), a group that correlates strongly with *p*-cymene, and two individual samples (Lgd(Dev and Lpap#1)). The *p*-cymene group may constitute a discrete chemotype of L. papilioniferum, while the volatile phytochemical profiles displayed by the Oregon samples are complicated and unresolved.

#### 2.8. Analysis of Variance

Analysis of variance (ANOVA) examinations were carried out to identify statistically significant differences in percentages of essential oil components (Table 9). Analyses of the essential oil compositions of *L. anomalum*, *L. packardiae*, and *L. triternatum* var. *triternatum* allow for discrimination between the members of the *L. triternatum* complex. *Lo-*

*matium packardiae* essential oils contain a significantly higher concentration of limonene (60.9%  $\pm$  10.1%) than the other essential oils, including *L. anomalum* (1.2%  $\pm$  0.5%) or *L. triternatum triternatum* (2.5%  $\pm$  2.0%). (*Z*)-Ligustilide concentrations were significantly higher in *L. packardiae* (16.2%  $\pm$  3.0%) than either *L. anomalum* (0.4%  $\pm$  0.4%) or *L. triternatum triternatum* (not observed). On the other hand, *L. anomalum* essential oils had significantly higher concentrations of both sabinene (48.7%  $\pm$  1.0%) and  $\alpha$ -pinene (27.7%  $\pm$  8.6%) than the other *Lomatium* essential oils. *Lomatium triternatum* var. *triternatum*, on the other hand, cannot be defined chemically with the data available; there was too much variation in the essential oil compositions.

In the *Lomatium dissectum* complex, it is easy to distinguish *L. dissectum* from *L. multi-fidum. Lomatium dissectum* essential oils were dominated by octyl acetate ( $42.6\% \pm 3.4\%$ ) and decyl acetate ( $40.4\% \pm 4.8\%$ ), which were detected in only minute, if at all, quantities in the other *Lomatium* essential oils. In contrast, *L. multifidum* had significantly higher myrcene concentrations ( $30.7\% \pm 13.2\%$ ) in its essential oils.

The volatile phytochemistry of *L. papilioniferum* seems to depend on geographical location. Collections from both Idaho and Oregon showed relatively high concentrations of *p*-cymene and  $\gamma$ -terpinene.  $\beta$ -Phellandrene was significantly higher in the Oregon samples (13.4% ± 11.9%) than the Idaho samples (trace amounts only), and sedanenolide concentrations were significantly greater in *L. papilioniferum* from Oregon (6.18% ± 5.26), which was not observed in any of the Idaho samples. Conversely, the *L. papilioniferum* essential oils from Idaho were dominated by 2-methyl-5-(1,2,2-trimethylcyclopentyl)phenol (29.0% ± 2.9%), which was virtually absent in the other *Lomatium* essential oils.

#### 2.9. Enantiomeric Distributions

Enantioselective GC-MS was carried out on the *Lomatium* essential oil samples to examine the distribution of chiral terpenoid components. The enantiomeric distributions are summarized in Table 10. There is variation in the enantiomeric distributions, both between species and within species. In order to assess the differences between the species and sampling sites, the enantiomeric distributions of  $(+)-\alpha$ -pinene, (-)-camphene, (+)-sabinene,  $(+)-\beta$ -pinene, (+)-limonene, and (+)-linalool were analyzed by an ANOVA followed by Tukey's test using Minitab<sup>®</sup> 18 (Minitab Inc., State College, PA, USA). Differences at *p* < 0.05 were considered to be statistically significant. (Table 11).

The three taxa in the *Lomatium triternatum* complex (*L. anomalum, L. packardiae*, and *L. triternatum* var. *triternatum*) are distinguished by significantly different  $\alpha$ -pinene, sabinene,  $\beta$ -pinene, and limonene enantiomeric distributions. The (+)- $\alpha$ -pinene and (+)-sabinene levels are significantly greater in *L. anomalum* than in *L. packardiae* or *L. triternatum triternatum*.

Furthermore, (+)- $\beta$ -pinene is significantly lower in *L. triternatum triternatum* than either *L. anomalum* or *L. packardiae*, and (+)-limonene is much greater in *L. packardiae* than *L. anomalum* or *L. triternatum triternatum*. There are significant differences in the limonene enantiomeric distributions between the Oregon *L. papilioniferum* samples and the Idaho *L. papilioniferum* samples. Likewise, (+)-limonene is significantly greater in *L. dissectum* compared with *L. multifidum*.

| Lomatium Species                         |                           |                           | Compos                   | nent Percentage (Mea       | ans $\pm$ Standard Dev     | viations)                 |                           |                            |
|------------------------------------------|---------------------------|---------------------------|--------------------------|----------------------------|----------------------------|---------------------------|---------------------------|----------------------------|
| Ĩ                                        | Limonene                  | Sabinene                  | α-Pinene                 | $\beta$ -Phellandrene      | Myrcene                    | β-Pinene                  | Cryptone                  | (E)-β-Ocimene              |
| Lomatium anomalum                        | $1.2\pm0.5$ <sup>b</sup>  | $48.7\pm1.0~^{\rm a}$     | $27.7\pm8.6~^{a}$        | $1.6\pm0.6$ <sup>c</sup>   | $0.9\pm0.6$ <sup>b</sup>   | $3.0\pm0.8$ <sup>b</sup>  | 0.0 <sup>b</sup>          | $0.5\pm0.3~^{\mathrm{ab}}$ |
| Lomatium dissectum var. dissectum        | traces <sup>b</sup>       | traces <sup>c</sup>       | traces <sup>b</sup>      | traces <sup>c</sup>        | traces <sup>b</sup>        | $0.1\pm0.1$ <sup>b</sup>  | 0.0 <sup>b</sup>          | traces <sup>b</sup>        |
| Lomatium multifidum                      | $4.2\pm3.8~^{\mathrm{b}}$ | $0.1\pm0.1$ c             | $0.4\pm0.4$ <sup>b</sup> | $4.0\pm7.8~^{ m c}$        | $30.7\pm13.2$ <sup>a</sup> | $0.1\pm0.1$ <sup>b</sup>  | $0.2\pm0.6$               | $13.4\pm10.8$ <sup>a</sup> |
| Lomatium nudicaule                       | $0.7\pm0.9$ <sup>b</sup>  | $0.2\pm0.1~^{ m c}$       | $0.8\pm0.3$ <sup>b</sup> | $31.8\pm12.0$ <sup>a</sup> | $3.3\pm2.1$ <sup>b</sup>   | $1.3\pm0.6$ <sup>b</sup>  | $2.4\pm3.3~^{ m ab}$      | $6.0\pm2.8~^{ m ab}$       |
| Lomatium packardiae                      | $60.9\pm10.1$ $^{\rm a}$  | $0.7\pm1.0$ c             | $1.0\pm0.6$ <sup>b</sup> | $5.3\pm0.8~{ m bc}$        | $3.1\pm0.5$ <sup>b</sup>   | $1.6\pm0.8$ <sup>b</sup>  | $0.1\pm0.1$ b             | $1.0\pm1.1$ b              |
| Lomatium papilioniferum (Idaho)          | $0.4\pm0.2$ <sup>b</sup>  | 0.0 <sup>c</sup>          | $0.1\pm0.1$ <sup>b</sup> | traces <sup>c</sup>        | $0.4\pm0.2~^{ m b}$        | traces <sup>b</sup>       | 0.0 <sup>b</sup>          | $0.1\pm0.1$ <sup>b</sup>   |
| Lomatium papilioniferum (Oregon)         | $2.2\pm0.6$ <sup>b</sup>  | $0.6\pm0.3$ <sup>c</sup>  | $1.7\pm0.7$ <sup>b</sup> | $13.4\pm11.9~^{ m abc}$    | $10.7\pm11.3~^{ m b}$      | $0.3\pm0.2$ <sup>b</sup>  | $0.9\pm1.2$ <sup>b</sup>  | $4.5\pm3.3$ $^{ m ab}$     |
| Lomatium triternatum var.<br>triternatum | $2.5\pm2.0~^{b}$          | $5.9\pm3.9~^{\rm b}$      | $5.1\pm4.3~^{\rm b}$     | $26.5\pm23.5~^{ab}$        | $9.9\pm6.1^{\ b}$          | $7.7\pm6.3$ $^{a}$        | $7.5\pm9.2~^{a}$          | $5.8\pm5.1~^{\rm ab}$      |
|                                          | octyl acetate             | decyl acetate             | <i>p</i> -cymene         | $\gamma$ -terpinene        | sedanenolide               | MTMCP                     | (Z)-ligustilide           | δ-3-carene                 |
| Lomatium anomalum                        | 0.0 <sup>b</sup>          | 0.0 <sup>b</sup>          | $0.5\pm0.3$ <sup>b</sup> | $4.8\pm2.2~^{ m ab}$       | 0.0 <sup>b</sup>           | traces <sup>b</sup>       | $0.4\pm0.4$ <sup>b</sup>  | traces <sup>b</sup>        |
| Lomatium dissectum var. dissectum        | $42.6\pm3.9$ <sup>a</sup> | $40.4\pm4.8$ <sup>a</sup> | traces <sup>b</sup>      | traces <sup>b</sup>        | 0.0 <sup>b</sup>           | 0.0 <sup>b</sup>          | traces <sup>b</sup>       | 0.0 <sup>b</sup>           |
| Lomatium multifidum                      | traces <sup>b</sup>       | $0.8\pm2.2$ <sup>b</sup>  | $2.0\pm4.1$ b            | $1.5\pm3.8~^{ m b}$        | traces <sup>b</sup>        | 0.0 <sup>b</sup>          | 0.0 <sup>b</sup>          | 0.0 <sup>b</sup>           |
| Lomatium nudicaule                       | 0.0 <sup>b</sup>          | 0.0 <sup>b</sup>          | $1.2\pm1.7$ <sup>b</sup> | $0.1\pm0.1$ <sup>b</sup>   | $0.1\pm0.1$ <sup>b</sup>   | 0.0 <sup>b</sup>          | $23.9\pm14.8~^{\rm a}$    | $3.2\pm4.5$ <sup>a</sup>   |
| Lomatium packardiae                      | 0.0 <sup>b</sup>          | 0.0 <sup>b</sup>          | $0.1\pm0.0$ <sup>b</sup> | $0.1\pm0.1$ <sup>b</sup>   | traces <sup>b</sup>        | $0.1\pm0.1$ <sup>b</sup>  | $16.2\pm3.0$ <sup>a</sup> | traces <sup>b</sup>        |
| Lomatium papilioniferum (Idaho)          | 0.0 <sup>b</sup>          | 0.0 <sup>b</sup>          | $21.4\pm1.1$ a           | $10.5\pm3.4~^{ m ab}$      | 0.0 <sup>b</sup>           | $29.0\pm2.9$ <sup>a</sup> | 0.0 <sup>b</sup>          | traces <sup>b</sup>        |
| Lomatium papilioniferum (Oregon)         | traces <sup>b</sup>       | $1.5\pm3.0$ <sup>b</sup>  | $14.9\pm22.0~^{ m ab}$   | $15.7\pm16.4$ a            | $6.2\pm5.3$ a              | 0.0 <sup>b</sup>          | traces <sup>b</sup>       | $0.2\pm0.2$ <sup>b</sup>   |
| Lomatium triternatum var.<br>triternatum | 0.0 <sup>b</sup>          | 0.0 <sup>b</sup>          | $2.4\pm1.8~^{\rm b}$     | $0.2\pm0.2~^{\rm b}$       | $0.2\pm0.2$ <sup>b</sup>   | 0.0 <sup>b</sup>          | 0.0 <sup>b</sup>          | traces <sup>b</sup>        |

| <b>There so comparison of Lower and the components of an angles of the analysis of the angles of the components of the com</b> | Table 9. Comparison o | f Lomatium essential oil com | ponents by analysis of | f variance (ANOVA) followed by | y Tukey's post hoc test. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|------------------------|--------------------------------|--------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|------------------------|--------------------------------|--------------------------|

For each column, means that do not share a letter are significantly different (p < 0.05). MTMCP = 2-methyl-5-(1,2,2-trimethylcyclopentyl)phenol.

| Table 10. | Enantiomeric | distribution | of chiral | terpenoid | components of | of <i>Lomatium</i> species. |
|-----------|--------------|--------------|-----------|-----------|---------------|-----------------------------|
|           |              |              |           |           |               |                             |

| Lomatium           |                             | Enantiomeric Distribution, (+): (–) |           |            |            |                |            |                |                      |  |  |  |  |  |
|--------------------|-----------------------------|-------------------------------------|-----------|------------|------------|----------------|------------|----------------|----------------------|--|--|--|--|--|
| Species            | α-Thujene                   | α-Pinene                            | Camphene  | Sabinene   | β-Pinene   | α-Phellandrene | Limonene   | β-Phellandrene | cis-Sabinene Hydrate |  |  |  |  |  |
| Loma               | <i>tium triternatum</i> com | nplex                               |           |            |            |                |            |                |                      |  |  |  |  |  |
| La#1               | 0.0: 100.0                  | 98.8: 1.2                           | -         | 95.8: 4.2  | 68.0: 32.0 | -              | 60.2: 39.8 | 94.9: 5.1      | 92.7: 7.3            |  |  |  |  |  |
| La#2               | 0.0: 100.0                  | 98.2: 1.8                           | -         | 95.1: 4.9  | 0.0: 100.0 | -              | 56.3: 43.7 | 93.8: 6.2      | 92.9: 7.1            |  |  |  |  |  |
| La#3               | 0.0: 100.0                  | 98.5: 1.5                           | -         | 95.8: 4.2  | 0.0: 100.0 | -              | 52.5: 47.5 | 95.0: 5.0      | 92.1: 7.9            |  |  |  |  |  |
| Lpack#1            | -                           | 47.2: 52.8                          | -         | -          | 66.7: 33.3 | 100.0: 0.0     | 99.3: 0.7  | 84.9: 15.1     | -                    |  |  |  |  |  |
| Lpack#2            | -                           | 29.5: 70.5                          | -         | -          | 28.8: 71.2 | 100.0: 0.0     | 99.1: 0.9  | 99.8: 0.2      | -                    |  |  |  |  |  |
| Lpack#3            | -                           | 6.3: 93.7                           | -         | 5.1: 94.9  | 2.8: 97.2  | 94.3: 5.7      | 98.9: 1.1  | 96.0: 4.0      | -                    |  |  |  |  |  |
| Lpack#4            | -                           | 6.6: 93.4                           | -         | 14.1: 85.9 | 2.1: 97.9  | 98.1: 1.9      | 99.1: 0.9  | 99.2: 0.8      | -                    |  |  |  |  |  |
| Ľ <del>tt</del> #1 | -                           | 51.2: 48.8                          | -         | 5.7: 94.3  | 27.5: 72.5 | 100.0: 0.0     | 29.8: 70.2 | 96.4: 3.6      | -                    |  |  |  |  |  |
| Ltt#2              | -                           | 5.4: 94.6                           | -         | 8.2: 91.8  | 2.7: 97.3  | -              | 20.2: 79.8 | 86.1: 13.9     | -                    |  |  |  |  |  |
| Ltt#3              | 0.0: 100.0                  | 3.3: 96.7                           | 8.8: 91.2 | 3.8: 96.2  | 2.2: 97.8  | 100.0: 0.0     | 24.7: 75.3 | 97.0: 3.0      | -                    |  |  |  |  |  |

Table 10. Cont.

| Lomatium       |                       |                                   |               |             | Enantiomeric D | istribution, (+): (–)   |              |                |            |               |  |
|----------------|-----------------------|-----------------------------------|---------------|-------------|----------------|-------------------------|--------------|----------------|------------|---------------|--|
| Species        | α-Thujene             | α-Pinene                          | Camphene      | Sabinene    | β-Pinene       | $\alpha$ -Phellandrene  | Limonene     | β-Phellandrene | cis-Sabine | ne Hydrate    |  |
| L              | omatium grayi comp    | olex                              |               |             |                |                         |              |                |            |               |  |
| Lpap#1 (OR)    | -                     | 30.3: 69.7                        | 20.0: 80.0    | -           | -              | -                       | 26.8: 73.2   | 77.0: 23.0     |            | -             |  |
| Lpap#2 (OR)    | 64.8: 35.2            | 24.0: 76.0                        | 15.9: 84.1    | 53.1: 46.9  | 14.5: 85.5     | 87.1: 12.9              | 13.9: 86.1   | 85.6: 14.4     |            | -             |  |
| Lpap#3 (OR)    | 62.2: 37.8            | 24.3: 75.7                        | 15.5: 84.5    | 53.8: 46.2  | 16.0: 84.0     | 81.6: 18.4              | 12.0: 88.0   | 80.9: 19.1     |            | -             |  |
| Lpap#4 (OR)    | 61.1: 38.9            | 13.7: 86.3                        | 13.8: 86.2    | 70.6: 29.4  | 8.8: 91.2      | -                       | 11.3: 88.7   | 78.8: 21.2     |            | -             |  |
| Lpap#5 (ID)    | -                     | -                                 | 25.9: 74.1    | -           | -              | -                       | 34.5: 65.5   | -              |            | -             |  |
| Lpap#6 (ID)    | -                     | 52.5: 47.5                        | -             | -           | -              | -                       | 54.4: 45.7   | -              |            | -             |  |
| Lpap#7 (ID)    | -                     | 45.2: 54.8                        | 27.4: 72.6    | -           | -              | -                       | 37.2: 62.8   | -              |            | -             |  |
| Lpap#8 (ID)    | -                     | 43.1: 56.9                        | 23.4: 76.6    | -           | -              | -                       | 31.5: 68.5   | -              |            | -             |  |
| Lon            | natium dissectum con  | nplex                             |               |             |                |                         |              |                |            |               |  |
| Ld#1           | -                     | 60.2: 39.8                        | -             | -           | 39.8: 60.2     | -                       | 79.3: 20.7   | 100.0: 0.0     |            | -             |  |
| Ld#2           | -                     | 33.1: 66.9                        | -             | -           | 63.5: 36.5     | -                       | 62.0: 38.0   | 100.0: 0.0     |            | -             |  |
| Ld#3           | -                     | 54.9: 45.1                        | -             | -           | -              | -                       | 100.0: 0.0   | 100.0: 0.0     |            | -             |  |
| Ld#4           | -                     | 87.8: 12.2                        | -             | -           | 95.7: 4.3      | -                       | 59.1: 40.9   | 100.0: 0.0     |            | -             |  |
| Ld#5           | -                     | 36.5: 63.5                        | -             | -           | 79.8: 20.2     | -                       | 56.9: 43.1   | 100.0: 0.0     |            | -             |  |
| Lm#1 (OR)      | -                     | 33.4: 66.6                        | 19.8: 80.2    | -           | -              | -                       | 24.7: 75.3   | -              |            | -             |  |
| Lm#2 (OR)      | -                     | 35.9: 64.1                        | 21.7: 78.3    | -           | -              | -                       | 35.6: 64.4   | -              |            | -             |  |
| Lm#3 (OR)      | -                     | 36.6: 63.4                        | 26.9: 73.1    | -           | -              | -                       | 34.9: 65.1   |                |            | -             |  |
| Lm#4 (OR)      | -                     | 42.4: 57.6                        | 28.1: 71.9    | -           | -              | -                       | 35.6: 64.4   | 100.0: 0.0     |            | -             |  |
| Lm#5 (OR)      | -                     | 46.2: 53.8                        | 31.3: 68.7    | -           | -              | -                       | 46.5: 53.5   | 100.0: 0.0     | -          |               |  |
| Lm#6 (OR)      | -                     | 45.1: 54.9                        | 76.4: 23.6    | -           | -              | -                       | 55.5: 44.5   | -              |            | -             |  |
| Lm#7 (ID)      | -                     | -                                 | -             | -           | -              | -                       | 38.7: 61.3   | -              |            | -             |  |
| Lm#8 (ID)      | -                     | 41.9: 48.1                        | 80.9: 19.1    | -           | -              | -                       | 51.7: 48.3   | -              |            | -             |  |
| Lm#9 (ID)      | -                     | 40.5: 59.5                        | 54.4: 45.6    | -           | -              | -                       | 47.6: 52.4   | -              |            | -             |  |
| Lm#10 (OR)     | -                     | 65.5: 34.5                        | 30.5: 69.5    | -           | -              | 100.0: 0.0              | 43.6: 56.4   | 100.0: 0.0     |            | -             |  |
| Lm#11 (OR)     | -                     | 52.2: 47.8                        | 24.5: 75.5    | -           | -              | -                       | 34.9: 65.1   | 100.0: 0.0     |            | -             |  |
| Lm#12 (OR)     | -                     | 21.1: 78.9                        | 24.7: 75.3    | -           | -              | -                       | 42.8: 57.2   | -              |            | -             |  |
| Lomatiun       | n nudicaule           |                                   |               | 100.0.0.0   | 100.0.0.0      |                         | 44.4 = 0.0   | 100.0.00       |            |               |  |
| Ln#1           | -                     | 92.9: 7.1                         | -             | 100.0: 0.0  | 100.0: 0.0     | 100.0: 0.0              | 41.1: 58.9   | 100.0: 0.0     |            | -             |  |
| Ln#2           | -                     | 89.9: 10.1                        | -             | -           | 94.1: 5.9      | -                       | 43.6: 56.4   | 99.9: 0.1      |            | -             |  |
| Ln#3           | -                     | 93.7: 6.3                         | -             | -           | 90.3: 9.7      | -                       | 48.8: 51.2   | 100.0: 0.0     |            | -             |  |
| Ln#4<br>L n#5  | -                     | 07.0: 12.2<br>01 E. 9 E           | -             | -           | 92.3: 7.7      | 100.0: 0.0              | 43.7: 56.3   | 99.9: 0.1      |            | -             |  |
| Ln#5<br>L n#6  | -                     | 91.5: 8.5                         | -             | -           | 96.7: 5.5      | 100.0: 0.0              | 44.8: 55.2   | 99.9: 0.1      |            | -             |  |
| L11#0<br>L n#7 | -                     | 00.0.11.7                         | -             | -           | 94.0. 3.4      | 100.0.0.0               | 43.2. 50.8   | 100 0. 0 0     |            | -             |  |
| L11#7          |                       | 90.9. 9.1                         | -             | -           | 92.0. 0.0      | 100.0. 0.0              | 49.0. 51.0   | 100.0. 0.0     |            | -             |  |
| Lomatium       |                       |                                   |               |             | Enantiomeric D | istribution, (+): (–)   |              |                |            |               |  |
| Species        | Linalool              | <i>trans</i> -Sabinene<br>Hydrate | Terpinen-4-ol | α-Terpineol | Piperitone     | (E)-β-<br>Caryophyllene | Germacrene D | β-Bisabolene   | δ-Cadinene | (E)-Nerolidol |  |
| Lomatium trite | <i>rnatum</i> complex |                                   |               |             |                |                         |              |                |            |               |  |
| La#1           | -1                    | 93.1: 6.9                         | 72.0: 28.0    | 59.3: 40.7  | -              | 0.0: 100.0              | 0.0: 100.0   | -              | -          | -             |  |
| La#2           | -                     | 95.4: 4.6                         | 71.8: 28.2    | 55.8: 44.2  | -              | 0.0: 100.0              | 0.0: 100.0   | -              | -          | -             |  |
| La#3           | -                     | 95.7: 4.3                         | 71.8: 28.2    | 55.5: 44.5  | -              | 0.0: 100.0              | 0.0: 100.0   | -              | -          | -             |  |
| Lpack#1        | -                     | -                                 | -             | -           | -              | -                       | -            | -              | -          | -             |  |
| Lpack#2        | -                     | -                                 | -             | -           | -              | -                       | 80.6: 19.4   | -              | -          | -             |  |
| Lpack#3        | -                     | -                                 | 29.4: 70.6    | -           | -              | 0.0: 100.0              | 24.6: 75.4   | -              | -          | -             |  |
| Lpack#4        | -                     | -                                 | -             | -           | -              | -                       | 30.9: 69.1   | -              | -          | -             |  |
| Ltt#1          | 56.8: 43.2            | -                                 | 35.7: 64.3    | -           | -              | -                       | 0.0: 100.0   | -              | -          | -             |  |
| Ltt#2          | 67.5: 32.5            | -                                 | -             | -           | -              | -                       | -            | -              | -          | -             |  |
| Ltt#3          | -                     | -                                 | 30.4: 69.6    | -           | -              | 0.0: 100.0              | 0.0: 100.0   | -              | -          | -             |  |

Table 10. Cont.

| <b>x</b>       | Enantiomeric Distribution, (+): (–) |                                   |               |             |            |                         |              |              |            |               |  |  |
|----------------|-------------------------------------|-----------------------------------|---------------|-------------|------------|-------------------------|--------------|--------------|------------|---------------|--|--|
| Species        | Linalool                            | <i>trans</i> -Sabinene<br>Hydrate | Terpinen-4-ol | α-Terpineol | Piperitone | (E)-β-<br>Caryophyllene | Germacrene D | β-Bisabolene | δ-Cadinene | (E)-Nerolidol |  |  |
| Lomatium gr    | <i>ayi</i> complex                  |                                   |               |             |            |                         |              |              |            |               |  |  |
| Lpap#1 (OR)    | 67.7: 32.3                          | -                                 | -             | 29.3: 70.7  | -          | -                       | -            | -            | -          | 7.4: 92.6     |  |  |
| Lpap#2 (OR)    | 88.6: 11.4                          | -                                 | 67.6: 32.4    | 26.2: 73.8  | 0.3: 99.7  | -                       | 0.0: 100.0   | -            | -          | -             |  |  |
| Lpap#3 (OR)    | 90.1: 9.9                           | -                                 | 69.5: 30.5    | 27.2: 72.8  | 0.3: 99.7  | -                       | 0.0: 100.0   | -            | -          | -             |  |  |
| Lpap#4 (OR)    | 78.7: 21.3                          | -                                 | 67.5: 32.5    | -           | 0.4: 99.6  | -                       | -            | -            | -          | -             |  |  |
| Lpap#5 (ID)    | -                                   | -                                 | -             | -           | -          | -                       | -            | -            | -          | 30.8: 69.2    |  |  |
| Lpap#6 (ID)    | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | 100.0: 0.0 | 36.1: 63.9    |  |  |
| Lpap#7 (ID)    | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | 100.0: 0.0 | 28.8: 71.2    |  |  |
| Lpap#8 (ID)    | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | 100.0: 0.0 | 26.9: 73.1    |  |  |
| Lomatium disse | <i>ctum</i> complex                 |                                   |               |             |            |                         |              |              |            |               |  |  |
| Ld#1           | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | -          | -             |  |  |
| Ld#2           | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | -          | -             |  |  |
| Ld#3           | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | -          | -             |  |  |
| Ld#4           | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | -          | -             |  |  |
| Ld#5           | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | -          | -             |  |  |
| Lm#1 (OR)      | -                                   | -                                 | -             | 29.6: 70.4  | -          | 0.0: 100.0              | -            | -            | -          | -             |  |  |
| Lm#2 (OR)      | -                                   | -                                 | -             | 30.3: 69.7  | -          | 0.0: 100.0              | -            | -            | -          | 7.7: 92.3     |  |  |
| Lm#3 (OR)      | -                                   | -                                 | -             | 26.4: 73.6  | -          | 0.0: 100.0              | -            | -            | -          | 5.0: 95.0     |  |  |
| Lm#4 (OR)      | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | -          | -             |  |  |
| Lm#5 (OR)      | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | -          | 6.5: 93.5     |  |  |
| Lm#6 (OR)      | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | -          | 15.2: 84.8    |  |  |
| Lm#7 (ID)      | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | 100.0: 0.0   | -          | 18.7: 81.3    |  |  |
| Lm#8 (ID)      | -                                   | -                                 | -             | 28.2: 71.8  | -          | 0.0: 100.0              | -            | 25.6: 74.4   | -          | 14.7: 85.3    |  |  |
| Lm#9 (ID)      | -                                   | -                                 | -             | 30.3: 69.7  | -          | 0.0: 100.0              | -            | 17.1: 82.9   | -          | 11.0: 89.0    |  |  |
| Lm#10 (OŔ)     | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | -          | -             |  |  |
| Lm#11 (OR)     | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | 100.0: 0.0   | -          | 8.3: 91.7     |  |  |
| Lm#12(OR)      | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | 100.0: 0.0   | -          | 8.5: 91.5     |  |  |
| Lomatium       | nudicaule                           |                                   |               |             |            |                         |              |              |            |               |  |  |
| Ln#1           | 27.1: 72.9                          | -                                 | -             | -           | -          | 0.0: 100.0              | 100.0: 0.0   | -            | -          | -             |  |  |
| Ln#2           | 37.1: 62.9                          | -                                 | -             | -           | -          | -                       | -            | -            | -          | -             |  |  |
| Ln#3           | 32.0: 68.0                          | -                                 | -             | -           | -          | -                       | -            | -            | -          | -             |  |  |
| Ln#4           | 19.6: 80.4                          | -                                 | -             | -           | -          | 0.0: 100.0              | 93.4: 6.6    | -            | -          | -             |  |  |
| Ln#5           | 22.6: 77.4                          | -                                 | -             | -           | -          | 0.0: 100.0              | 94.3: 5.7    | -            | -          | -             |  |  |
| Ln#6           | 10.7: 89.3                          | -                                 | -             | -           | -          | 0.0: 100.0              | 94.9: 5.1    | -            | -          | -             |  |  |
| Ln#7           | -                                   | -                                 | -             | -           | -          | 0.0: 100.0              | -            | -            | -          | -             |  |  |

La = Lomatium anomalum, Lpack = Lomatium packardiae, Ltt = Lomatium triternatum var. triternatum, Lpap = Lomatium papilioniferum, OR = sample collected in Oregon, ID = sample collected in Idaho, Ld = Lomatium dissectum, Lm = Lomatium multifidum, Ln = Lomatium nudicaule, - = not observed.

|                                       | <b>Tuble 111</b> Environnel percentages and significance for entital monocripenolas in Estimations operies subed on third (11) takey. |                            |                           |                            |                             |                            |  |  |  |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|----------------------------|-----------------------------|----------------------------|--|--|--|--|--|--|
|                                       | Enantiomer Percentage (Means $\pm$ Standard Deviations)                                                                               |                            |                           |                            |                             |                            |  |  |  |  |  |  |
| Lomatium Species                      | (+)-α-Pinene                                                                                                                          | (–)-Camphene               | (+)-Sabinene              | (+)-β-Pinene               | (+)-Limonene                | (+)-Linalool               |  |  |  |  |  |  |
| Lomatium anomalum                     | $98.5\pm0.3$ $^{\mathrm{a}}$                                                                                                          | -                          | $95.6\pm0.4$ a            | $22.7\pm39.3~^{\rm bc}$    | $56.3\pm3.9~^{\mathrm{bc}}$ | -                          |  |  |  |  |  |  |
| Lomatium packardiae                   | $22.4\pm19.8^{ m c}$                                                                                                                  | -                          | $9.6\pm6.4$ c             | $25.1\pm30.4~^{ m bc}$     | $99.1\pm0.2$ a              | -                          |  |  |  |  |  |  |
| Lomatium triternatum var. triternatum | $20.0\pm27.1~^{ m c}$                                                                                                                 | -                          | $5.9\pm2.2$ c             | $10.8\pm14.5$ <sup>c</sup> | $24.9\pm4.8~^{ m de}$       | $62.2\pm7.6$ <sup>a</sup>  |  |  |  |  |  |  |
| Lomatium papilioniferum (Oregon)      | $23.1\pm6.9$ c                                                                                                                        | $83.7\pm2.6$ <sup>a</sup>  | $59.2\pm9.9$ <sup>b</sup> | $13.1\pm3.8$ c             | $16.0\pm7.3$ $^{ m e}$      | $81.3\pm10.4$ <sup>a</sup> |  |  |  |  |  |  |
| Lomatium papilioniferum (Idaho)       | $46.9\pm4.9~\mathrm{^{bc}}$                                                                                                           | $74.4\pm2.0$ a             | -                         | -                          | $39.4\pm10.3$ <sup>cd</sup> | -                          |  |  |  |  |  |  |
| Lomatium dissectum                    | $54.5\pm21.9$ <sup>b</sup>                                                                                                            | -                          | -                         | $69.7\pm23.9~^{ m ab}$     | $71.5\pm18.2^{ m b}$        | -                          |  |  |  |  |  |  |
| Lomatium multifidum                   | $41.9\pm11.2~^{ m bc}$                                                                                                                | $61.9\pm22.1$ <sup>a</sup> | -                         | -                          | $41.0\pm8.6~^{ m cd}$       | -                          |  |  |  |  |  |  |
| Lomatium nudicaule                    | $90.7\pm2.2$ a                                                                                                                        | -                          | -                         | $94.3\pm3.3$ a             | $44.9\pm3.0~^{ m cd}$       | $24.9\pm9.4$ <sup>b</sup>  |  |  |  |  |  |  |

Table 11. Enantiomer percentages and significance for chiral monoterpenoids in *Lomatium* species based on ANOVA/Tukey.

For each column, means that do not share a letter are significantly different (p < 0.05). - = not observed.

### 3. Materials and Methods

#### 3.1. Plant Collection and Identification

The *L. anomalum*, *L. packardiae*, and *L. triternatum* plant samples were identified by W.N. Setzer using published botanical descriptions [2,3,10] and comparison with herbarium samples from the New York Botanical Garden [31–33] and the Intermountain Region Herbarium Network [34]. *Lomatium papilioniferum* was identified by W.N. Setzer using published botanical descriptions [13] and by comparison with herbarium samples from the New York Botanical Garden [35]. *Lomatium dissectum* and *L. multifidum* were identified by W.N. Setzer using published botanical descriptions [14] and verified by comparison with herbarium samples [36,37]. *Lomatium nudicaule* was identified in the field by W.N. Setzer using a field guide [5] and verified using published botanical descriptions [38–40] and herbarium samples from the New York Botanical Garden [41]. Voucher specimens of each species were deposited with the herbarium of the University of Alabama in Huntsville, and voucher numbers are presented in Table 12.

#### 3.2. Hydrodistillation

The fresh plant materials were stored frozen (-20 °C) until distillation. For each sample, the fresh/frozen aerial parts were chopped and hydrodistilled using a Likens-Nickerson apparatus [42–44] with continuous extraction of the distillate for four hours. The chopped plant material was placed in a 1000-mL flask with enough distilled water to cover the material. Dichloromethane (25 mL) was used in the receiving flask. Evaporation of the dichloromethane gave the essential oils, summarized in Table 12.

#### 3.3. Gas Chromatographic Analysis

The essential oils of the aerial parts of *L. anomalum*, *L. dissectum*, *L. multifidum*, *L. nudicaule*, *L. packardiae*, *L. papilioniferum*, and *L. triternatum* var. *triternatum* were analyzed by gas chromatography–mass spectrometry (GC-MS), gas chromatography coupled with flame ionization detection (GC-FID), and chiral GC-MS as previously described [45]. Instrumental details are provided as supplementary material (Supplementary Table S1). Retention indices (RIs) were determined using a homologous series of *n*-alkanes using the linear formula of van den Dool and Kratz [46]. The essential oil components were identified by comparing their retention index values (within ten RI units) and their mass spectral fragmentation patterns (>80% similarity) with those reported in the Adams [47], FFNSC3 [48], NIST20 [49], and Satyal [50] databases. The compound percentages were calculated from raw peak areas without standardization. The individual enantiomers were determined using enantioselective GC-MS by comparison of MS fragmentation and RI values with authentic samples (Sigma-Aldrich, Milwaukee, WI, USA), which were compiled in our in-house database. Percentages of each enantiomer were calculated from raw peak integration.

| Lomatium Species (Voucher Number)                                           | Sample # | Collection Site                                                                               | Collection Date | Mass Aerial Parts<br>(g) | Mass Essential<br>Oil (g) | Essential Oil<br>Color | %     |
|-----------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------|-----------------|--------------------------|---------------------------|------------------------|-------|
| Lomatium anomalum Jones ex J.M. Coult. & Rose<br>(voucher WNS-La-5379)      | #1       | Near Grangeville, Idaho (45°55′29″ N,<br>116°8′19″ W, 1042 m asl)                             | 2 June 2022     | 72.25                    | 1.214                     | pale yellow            | 1.68  |
| Lomatium anomalum Jones ex J.M. Coult. & Rose                               | #2       | Near Grangeville, Idaho (45°52'34″ N,<br>116°13'40″ W, 1079 m asl)                            | 30 May 2024     | 108.12                   | 1.692                     | colorless              | 1.57  |
| Lomatium anomalum Jones ex J.M. Coult. & Rose                               | #3       | Near Grangeville, Idaho (45°52'34" N,<br>116°13'40" W, 1079 m asl)                            | 30 May 2024     | 97.72                    | 1.594                     | colorless              | 1.63  |
| Lomatium dissectum (Nutt.) Mathias & Constance (voucher WNS-Ld-0181)        | #1       | Near Grangeville, Idaho (45°52'34″ N,<br>116°13'40″ W, 1079 m asl)                            | 30 May 2024     | 94.80                    | 2.401                     | colorless              | 2.53  |
| Lomatium dissectum (Nutt.) Mathias &<br>Constance                           | #2       | Near Grangeville, Idaho (45°50′24″ N,<br>116°14′6″ W, 1275 m asl)                             | 30 May 2024     | 113.31                   | 3.107                     | colorless              | 2.74  |
| Lomatium dissectum (Nutt.) Mathias &<br>Constance                           | #3       | Near Grangeville, Idaho (45°50'24″ N,<br>116°14′6″ W, 1275 m asl)                             | 30 May 2024     | 238.04                   | 4.623                     | colorless              | 1.94  |
| Lomatium dissectum (Nutt.) Mathias &<br>Constance                           | #4       | Near Grangeville, Idaho (45°50'24″ N,<br>116°14'6″ W, 1275 m asl)                             | 30 May 2024     | 129.21                   | 3.370                     | colorless              | 2.61  |
| Lomatium dissectum (Nutt.) Mathias &<br>Constance                           | #5       | Near Grangeville, Idaho (45°50'24″ N,<br>116°14'6″ W, 1275 m asl)                             | 30 May 2024     | 198.53                   | 4.070                     | colorless              | 2.05  |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach (voucher WNS-Lm-7137) | #1       | Between Boggs Junction and Arlington,<br>Oregon (45°41′23″ N, 120°30′0″ W, 97 m asl)          | 17 April 2023   | 176.41                   | 4.712                     | yellow                 | 2.67  |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach                       | #2       | Between Boggs Junction and Arlington,<br>Oregon (45°41′23″ N, 120°30′0″ W, 97 m asl)          | 17 April 2023   | 89.14                    | 1.699                     | yellow                 | 1.91  |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach                       | #3       | Leslie Gulch, Oregon (43°18'22" N, 117°17'31"<br>W, 955 m asl)                                | 27 May 2023     | 64.18                    | 3.429                     | yellow                 | 5.34  |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach                       | #4       | Leslie Gulch, Oregon (43°18'22" N, 117°17'31"<br>W, 955 m asl)                                | 27 May 2023     | 83.37                    | 4.492                     | yellow                 | 5.39  |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach                       | #5       | Leslie Gulch, Oregon (43°18'22" N, 117°17'31"<br>W, 955 m asl)                                | 27 May 2023     | 62.89                    | 1.288                     | yellow                 | 2.05  |
| Lomatium multifidum (Nutt.) R.P. McNeill & Darrach                          | #6       | Near Prairie, Idaho (43°32′33″ N, 115°48′14″<br>W, 1143 m asl)                                | 25 May 2023     | 38.87                    | 2.141                     | yellow                 | 5.51  |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach                       | #7       | Near Prairie, Idaho (43°32′33″ N, 115°48′14″<br>W, 1143 m asl)                                | 25 May 2023     | 79.81                    | 4.907                     | yellow                 | 6.148 |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach                       | #8       | Near Prairie, Idaho (43°32′33″ N, 115°48′14″<br>W, 1143 m asl)                                | 25 May 2023     | 43.88                    | 1.583                     | yellow                 | 3.61  |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach                       | #9       | Near Prairie, Idaho $(43^{\circ}32'33'' \text{ N}, 115^{\circ}48'14'' W, 1143 \text{ m asl})$ | 25 May 2023     | 58.09                    | 2.537                     | yellow                 | 4.37  |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach                       | #10      | Lake Owyhee, Oregon (43°36'33" N,<br>117°15'15" W, 841 m asl)                                 | 8 May 2024      | 97.41                    | 2.578                     | colorless              | 2.65  |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach                       | #11      | Lake Owyhee, Oregon (43°36′33″ N,<br>117°15′15″ W, 841 m asl)                                 | 8 May 2024      | 69.77                    | 1.116                     | pale yellow            | 1.60  |
| Lomatium multifidum (Nutt.) R.P. McNeill &<br>Darrach                       | #12      | Leslie Gulch, Oregon (43°18'26" N, 117°17'32"<br>W, 952 m asl)                                | 11 May 2024     | 124.04                   | 3.643                     | colorless              | 2.94  |
| Lomatium nudicaule (Nutt.) J.M. Coult. & Rose<br>(voucher WNS-Ln-5374)      | #1       | Boise Foothills, Idaho (43° 32′45″ N, 115° 48′15″<br>W, 1146 m asl)                           | 12 June 2022    | 191.37                   | 0.564                     | pale yellow            | 0.30  |
| Lomatium nudicaule (Nutt.) J.M. Coult. & Rose                               | #2       | Boise Foothills, Idaho (43°32′45″ N, 115°48′15″<br>W, 1146 m asl)                             | 12 June 2022    | 46.03                    | 0.100                     | pale yellow            | 0.22  |
| Lomatium nudicaule (Nutt.) J.M. Coult. & Rose                               | #3       | Boise Foothills, Idaho (43°32′45″ N, 115°48′15″<br>W, 1146 m asl)                             | 12 June 2022    | 42.06                    | 0.063                     | pale yellow            | 0.15  |

**Table 12.** Collection and hydrodistillation details for *Lomatium* species.

| Lomatium Species (Voucher Number)                                                             | Sample # | Collection Site                                                                      | Collection Date | Mass Aerial Parts<br>(g) | Mass Essential<br>Oil (g) | Essential Oil<br>Color | %    |
|-----------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------|-----------------|--------------------------|---------------------------|------------------------|------|
| Lomatium nudicaule (Nutt.) J.M. Coult. & Rose                                                 | #4       | Near Prairie, Idaho (43°32′33″ N, 115°48′13″<br>W, 1142 m asl)                       | 25 May 2023     | 68.16                    | 1.822                     | colorless              | 2.67 |
| Lomatium nudicaule (Nutt.) J.M. Coult. & Rose                                                 | #5       | Near Prairie, Idaho (43°32′33″ N, 115°48′13″<br>W, 1142 m asl)                       | 25 May 2023     | 67.14                    | 1.845                     | colorless              | 2.75 |
| Lomatium nudicaule (Nutt.) J.M. Coult. & Rose                                                 | #6       | Near Prairie, Idaho (43°32′33″ N, 115°48′13″<br>W, 1142 m asl)                       | 25 May 2023     | 49.56                    | 1.253                     | pale yellow            | 2.53 |
| Lomatium nudicaule (Nutt.) J.M. Coult. & Rose                                                 | #7       | Near Midvale, Idaho (44°26′45″ N, 116°48′3″<br>W, 963 m asl)                         | 21 May 2024     | 120.37                   | 3.620                     | colorless              | 3.01 |
| Lomatium packardiae Cronquist (voucher WNS-Lpack-0173)                                        | #1       | Near Midvale, Idaho (44°25′29″ N, 116°49′19″<br>W, 988 m asl)                        | 21 May 2024     | 70.22                    | 1.287                     | colorless              | 1.83 |
| Lomatium packardiae Cronquist                                                                 | #2       | Near Midvale, Idaho (44°26'42" N, 116°48'1"<br>W, 963 m asl)                         | 21 May 2024     | 123.10                   | 1.920                     | colorless              | 1.56 |
| Lomatium papilioniferum J.A.<br>Alexander & Whaley (voucher<br>WNS-Lpap-6926)                 | #1       | Between Boggs Junction and Arlington,<br>Oregon (45°41'23" N, 120°30'0" W, 97 m asl) | 17 April 2023   | 90.10                    | 0.179                     | yellow                 | 0.20 |
| Lomatium papilioniferum J.A.<br>Alexander & Whaley                                            | #2       | Between Boggs Junction and Arlington,<br>Oregon (45°41'23" N, 120°30'0" W, 97 m asl) | 17 April 2023   | 134.46                   | 1.532                     | yellow                 | 1.14 |
| Lomatium papilioniferum J.A.<br>Alexander & Whaley                                            | #3       | Between Boggs Junction and Arlington,<br>Oregon (45°41′23″ N, 120°30′0″ W, 97 m asl) | 17 April 2023   | 112.70                   | 2.208                     | colorless              | 1.96 |
| Lomatium papilioniferum J.A.<br>Alexander & Whaley                                            | #4       | Between Boggs Junction and Arlington,<br>Oregon (45°41'23" N, 120°30'0" W, 97 m asl) | 17 April 2023   | 153.02                   | 2.349                     | pale yellow            | 1.54 |
| Lomatium papilioniferum J.A.<br>Alexander & Whaley                                            | #5       | Near Mann Creek Reservoir, Idaho (44°23'43"<br>N. 116°53'45" W. 900 m asl)           | 21 May 2024     | 71.85                    | 2.066                     | yellow                 | 2.88 |
| Lomatium papilioniferum J.A.<br>Alexander & Whaley                                            | #6       | Near Mann Creek Reservoir, Idaho (44°23'43"<br>N, 116°53'45" W, 900 m asl)           | 21 May 2024     | 68.18                    | 2.199                     | yellow                 | 3.23 |
| Lomatium papilioniferum J.A.<br>Alexander & Whaley                                            | #7       | Near Mann Creek Reservoir, Idaho (44°24'5"<br>N. 116°53'53" W. 883 m asl)            | 21 May 2024     | 90.42                    | 2.754                     | yellow                 | 3.05 |
| Lomatium papilioniferum J.A.<br>Alexander & Whaley                                            | #8       | Near Mann Creek Reservoir, Idaho (44°24'4"<br>N, 116°53'53" W, 884 m asl)            | 21 May 2024     | 62.27                    | 2.071                     | yellow                 | 3.33 |
| Lomatium triternatum (Pursh) J.M.<br>Coult. & Rose var. triternatum (voucher<br>WNS-Ltt-7101) | #1       | Near Prairie, Idaho (43°30′25″ N, 115°55′35″<br>W, 1460 m asl)                       | 25 May 2023     | 30.30                    | 0.538                     | colorless              | 1.77 |
| Lomatium triternatum (Pursh) J.M.<br>Coult. & Rose                                            | #2       | Near Prairie, Idaho (43°30′25″ N, 115°55′35″<br>W, 1460 m asl)                       | 25 May 2023     | 39.22                    | 0.638                     | colorless              | 1.63 |
| Lomatium triternatum (Pursh) J.M.<br>Coult. & Rose                                            | #3       | Near Prairie, Idaho (43°30′25″ N, 115°55′35″<br>W, 1460 m asl)                       | 25 May 2023     | 27.06                    | 0.367                     | colorless              | 1.36 |
| Lomatium triternatum (Pursh) J.M.<br>Coult. & Rose                                            | #4       | Near Arrowrock Reservoir, Idaho (43°36'41" N,<br>115°49'59" W, 984 m asl)            | 9 May 2024      | 87.12                    | 1.569                     | pale yellow            | 1.80 |
| Lomatium triternatum (Pursh) J.M.<br>Coult. & Rose                                            | #5       | Near Arrowrock Reservoir, Idaho (43°36'42" N,<br>115°49'56" W, 985 m asl)            | 9 May 2024      | 48.25                    | 1.038                     | colorless              | 2.15 |

#### 3.4. Statistical Analyses

An agglomerative hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out using XLSTAT v. 2018.1.1.62926 (Addinsoft, Paris, France). The HCA and PCA analyses were carried out using the percentages of the most abundant components (*Lomatium triternatum* complex: limonene, sabinene,  $\beta$ -phellandrene,  $\alpha$ -pinene, (Z)-ligustilide, myrcene,  $\beta$ -pinene, cryptone, (E)- $\beta$ -ocimene, carotol,  $\gamma$ -terpinene, terpinen-4-ol, and spathulenol; *Lomatium dissectum* complex: β-myrcene, decyl acetate, octyl acetate, (*E*)- $\beta$ -ocimene, 1-decanol, limonene,  $\alpha$ -bisabolol,  $\beta$ -phellandrene, unidentified (RI 1959), 2-methyloct-(3*E*)-en-5-yne, longifolene, (*Z*)- $\beta$ -ocimene, *p*-cymene, camphene, bornyl acetate,  $\alpha$ -eudesmol,  $\gamma$ -terpinene, terpinolene, 1-octanol,  $\gamma$ -eudesmol, globulol, agarospyryl acetate, and viridiflorene; Lomatium gravi complex: p-cymene,  $\gamma$ -terpinene, limonene +  $\beta$ -phellandrene, 2-methyl-5-(1,2,2-trimethylcyclopentyl)phenol, sedanenolide, myrcene, (E)- $\beta$ -ocimene, (Z)- $\beta$ -ocimene, cuparene, 3-butylphthalide, piperitone, longifolene, humulol, terpinolene,  $\alpha$ -pinene, (*E*)-nerolidol, and decyl acetate) from this study in addition to compositions previously reported. Dissimilarity was used to determine clusters considering Euclidean distance, and Ward's method was used to define agglomeration. The PCA, type correlation, was carried out to verify the chemical associations (clusters) from the HCA analysis. An analysis of variance was conducted by a one-way ANOVA followed by the Tukey test [51] using Minitab<sup>®</sup> 18 (Minitab Inc., State College, PA, USA). Differences at p < 0.05 were considered to be statistically significant.

## 4. Conclusions

In this work, the essential oils of seven species of Lomatium (L. anomalum, L. dissectum, L. multifidum, L. nudicaule, L. packardiae, L. papilioniferum, and L. triternatum var. triterna*tum*) from the intermountain western United States were obtained and analyzed by gas chromatographic methods. This work complements previously published essential oil analyses of *Lomatium* species. In addition, the enantiomeric distributions of chiral terpenoid components in this work serve to further characterize the *Lomatium* species. The three species in the Lomatium triternatum complex can be distinguished by their essential oil compositions. Lomatium packardiae essential oil can be characterized as a limonene-rich essential oil, and *L. anomalum* is a species rich in sabinene and  $\alpha$ -pinene. The essential oils of L. dissectum and L. multifidum, members of the Lomatium dissectum complex, are readily discriminated based on essential oil composition. Lomatium multifidum essential oils were rich in myrcene while L. dissectum essential oils were dominated by octyl acetate and decyl acetate. Lomatium papilioniferum essential oils from western Idaho are readily characterized by high *p*-cymene and 2-methyl-5-(1,2,2-trimethylcyclopentyl)phenol concentrations. North-central Oregon L. papilioniferum essential oils were variable but may be tentatively classified as high in  $\beta$ -phellandrene and sedanenolide. There are not enough consistent data to properly characterize the chemotype(s) of L. triternatum var. triternatum. Because of the variation observed in the Oregon L. papilioniferum essential oils, additional collection and analyses are needed to confidently describe the chemotype(s) of that species, as well as the L. gravi complex in general. Additional sampling from other geographical locations would be helpful. The life cycle and timing of the sampling could affect the composition; additional sampling throughout the phenological stages of each species would provide important additional information.

**Supplementary Materials:** The following supporting information can be downloaded at https: //www.mdpi.com/article/10.3390/plants14020186/s1: Table S1: Instrument details for the gas chromatographic analyses of *Lomatium* species.

46 of 48

**Author Contributions:** Conceptualization, W.N.S.; methodology, W.N.S. and P.S.; software, P.S.; validation, W.N.S., formal analysis, W.N.S., A.P. and P.S.; investigation, W.N.S., A.P., P.S. and K.S.; resources, W.N.S. and P.S.; data curation, W.N.S.; writing—original draft preparation, W.N.S.; writing—review and editing, W.N.S., A.P., P.S., K.S. and C.C.S.; project administration, W.N.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

**Data Availability Statement:** All data are available in this report. Additional information is available from the corresponding author upon reasonable request.

Acknowledgments: This work was carried out as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/) (accessed on 9 January 2025). We thank Joyce Kelly R. da Silva (Universidade Federal do Pará, Belém, Brazil) for helpful discussions.

Conflicts of Interest: The authors declare no conflicts of interest.

## References

- 1. World Flora Online. *Lomatium* Raf. Available online: https://www.worldfloraonline.org/taxon/wfo-4000022127 (accessed on 26 May 2024).
- 2. Stevens, M.; Mansfield, D.H.; Smith, J.F.; Feist, M.A.E. Resolving the anomaly of *Lomatium anomalum*: Discovery of a new species in southwestern Idaho (U.S.A.), *Lomatium andrusianum* (Apiaceae). *J. Bot. Res. Inst. Tex.* **2018**, *12*, 1–15. [CrossRef]
- 3. Ottenlips, M.V.; Mansfield, D.H.; Buerki, S.; Feist, M.A.E.; Downie, S.R.; Dodsworth, S.; Forest, F.; Plunkett, G.M.; Smith, J.F. Resolving species boundaries in a recent radiation with the Angiosperms353 probe set: The *Lomatium packardiae/L. anomalum* clade of the *L. triternatum* (Apiaceae) complex. *Am. J. Bot.* **2021**, *108*, 1217–1233. [CrossRef] [PubMed]
- 4. Moerman, D.E. Native American Ethnobotany; Timber Press, Inc.: Portland, OR, USA, 1998; ISBN 978-0-88192-453-4.
- 5. Turner, M.; Gustafson, P. Wildflowers of the Pacific Northwest; Timber Press, Inc.: Portland, OR, USA, 2006; ISBN 978-0-88192-745-0.
- 6. Kartesz, J.T. The Biota of North America Program (BONAP). Available online: https://bonap.net/MapGallery/County/ Lomatium%20triternatum.png (accessed on 9 June 2024).
- Tilley, D.; St. John, L.; Ogle, D.; Shaw, N. Plant Guide for Nineleaf Biscuitroot (Lomatium triternatum); United States Department of Agriculture, Natural Resources Conservation Service, Idaho Plant Materials Center: Aberdeen, ID, USA, 2010.
- 8. Gucker, C.L.; Shaw, N.L. Nineleaf Biscuitroot: *Lomatium triternatum* (Pursh) J.M. Coult. & Rose. In *Western Forbs: Biology, Ecology, and Use in Restoration*; Gucker, C.L., Shaw, N.L., Eds.; Great Basin Fire Science Exchange: Reno, NV, USA, 2020; p. 21.
- 9. Lesica, P.; Kittelson, P.M. Morphological and ecological segregation of two sympatric *Lomatium triternatum* (Apiaceae) varieties in Montana. *Madroño* 2023, 60, 211–216. [CrossRef]
- 10. Smith, J.F.; Mansfield, D.H.; Stevens, M.; Sosa, E.; Feist, M.A.E.; Downie, S.R.; Plunkett, G.M.; Darrach, M. Try Tri again? Resolving species boundaries in the *Lomatium triternatum* (Apiaceae) complex. *J. Syst. Evol.* **2018**, *56*, 218–230. [CrossRef]
- 11. Tilley, D.; St. John, L.; Ogle, D.; Shaw, N. *Plant Guide for Gray's Biscuitroot (Lomatium grayi);* United States Department of Agriculture, Natural Resources Conservation Service, Idaho Plant Materials Center: Aberdeen, ID, USA, 2011.
- 12. Kartesz, J.T. The Biota of North America Program (BONAP). Available online: https://bonap.net/MapGallery/County/Lomatium%20grayi.png (accessed on 2 June 2024).
- Alexander, J.A.; Whaley, W.; Blain, N. The *Lomatium grayi* complex (Apiaceae) of the western United States: A taxonomic revision based on morphometic, essential oil composition, and larva-host coevolution studies. *J. Bot. Res. Inst. Tex.* 2018, 12, 387–444. [CrossRef]
- 14. Feist, M.A.E.; Smith, J.F.; Mansfield, D.H.; Darrach, M.; McNeill, R.P.; Downie, S.R.; Plunkett, G.M.; Wilson, B.L. New combinations in *Lomatium* (Apiaceae, subfamily Apioideae). *Phytotaxa* 2017, *316*, 95–98. [CrossRef]
- Constance, L.; Wetherwax, M. Lomatium dissectum. Available online: https://ucjeps.berkeley.edu/eflora/eflora\_display.php?tid= 31405 (accessed on 1 June 2024).
- 16. Intermountain Region Herbarium Network. *Lomatium multifidum*. Available online: https://www.intermountainbiota.org/portal/collections/list.php (accessed on 29 May 2024).
- 17. World Flora Online. *Lomatium multifidum* (Nutt.) R.P. McNeill & Darrach. Available online: http://www.worldfloraonline.org/ taxon/wfo-0001423732 (accessed on 29 May 2024).
- 18. Kartesz, J.T. The Biota of North America Program (BONAP). Available online: https://bonap.net/MapGallery/County/ Lomatium%20nudicaule.png (accessed on 6 June 2024).

- Schlichter, P. Lomatium nudicaule. Available online: http://science.halleyhosting.com/nature/gorge/5petal/pars/lomatium/ nudicaule/nudicaule10-18-2015.jpg (accessed on 6 June 2024).
- Beauchamp, P.S.; Chea, E.; Dimaano, J.G.; Dev, V.; Ly, B.; Miranda, A.E.; Whaley, W.H. Essential oil composition of six *Lomatium* species attractive to Indra swallowtail butterfly (*Papilio indra*): Principal component analysis against essential oil composition of *Lomatium dissectum* var. *multifidum*. J. Essent. Oil Res. 2009, 21, 535–542. [CrossRef]
- 21. Asuming, W.A.; Beauchamp, P.S.; Descalzo, J.T.; Dev, B.C.; Dev, V.; Frost, S.; Ma, C.W. Essential oil composition of four *Lomatium* Raf. species and their chemotaxonomy. *Biochem. Syst. Ecol.* **2005**, *33*, 17–26. [CrossRef]
- Bairamian, S.; Beauchamp, P.S.; Descalzo, J.T.; Dev, B.C.; Dev, V.; Frost, S.C.; Nguyen, C.V. California *Lomatiums* part III. Composition of the hydrodistilled oils from two varieties of *Lomatium dissectum*. Isolation of a new hydrocarbon. *J. Essent. Oil Res.* 2004, 16, 461–468. [CrossRef]
- 23. Beauchamp, P.S.; Dev, B.C.; Dev, V. California *Lomatiums*, part VI. Composition of the essential oils of *Lomatium foeniculaceum* ssp. *fimbriatu. J. Essent. Oil Res.* **2006**, *18*, 666–669. [CrossRef]
- 24. Dev, V.; Ly, B.; Miranda, A.E.; Whaley, W. *Lomatium grayi* and Indra swallowtail butterfly. Composition of the essential oils of three varieties of *Lomatium grayi* (J. M. Coult et Rose) J. M. Coult et Rose. *J. Essent. Oil Res.* 2007, *19*, 244–248. [CrossRef]
- Beauchamp, P.S.; Dev, V.; Tran, H.D.; Whaley, W.H. California *Lomatiums*, part VIII. Analysis of essential oils of *Lomatium marginatum* (Benth.) Coult. & Rose var. *purpureum* Jepson. isolation of (Z)-β-lomatene, a new sesquiterpene hydrocarbon. *J. Essent. Oil Res.* 2011, 23, 112–118. [CrossRef]
- 26. Beauchamp, P.S.; Dev, V.; Kittisanthanon, K.; Ly, B. California *Lomatiums*, part X. Comparison of composition of the hydrodistilled oils from two subspecies of *Lomatium mohavense*. *Nat. Prod. Res.* **2011**, *25*, 1347–1351. [CrossRef] [PubMed]
- Beauchamp, P.S.; Dev, B.C.; Dev, V.; Midland, S.L.; Sims, J.J. California *Lomatiums*, part VII. Analysis of the essential oils of *Lomatium nevadense* (Watson) J. Coulter et Rose var. *parishii* (J. Coulter et Rose) Jepson. Isolation of trans-dauc-8-en-11-ol, a new sesquiterpene alcohol and naturally occurring 2',3',3'-trimethyl-2',3'-dihydroangelicin. *J. Essent. Oil Res.* 2007, 19, 117–124. [CrossRef]
- Beauchamp, P.S.; Descalzo, J.T.; Dev, B.C.; Dev, V.; Nguyen, C.V.; Midland, S.L.; Sims, J.J.; Tham, F.S. California *Lomatiums*, part IV: Composition of the essential oils of *Lomatium rigidum* (M.E. Jones) Jepson. Structures of two new funebrene epimers and a tridecatriene. *J. Essent. Oil Res.* 2004, 16, 571–578. [CrossRef]
- Dev, V.; Whaley, W.H.; Bailey, S.R.; Chea, E.; Dimaano, J.G.; Jogani, D.K.; Ly, B.; Eggett, D. Essential oil composition of nine Apiaceae species from western United States that attract the female Indra Swallowtail butterfly (*Papilio indra*). *Biochem. Syst. Ecol.* 2010, *38*, 538–547. [CrossRef]
- 30. Bedrossian, A.; Beauchamp, P.E.; Dev, V.; Kwan, S.; Munevar-Mendoza, E.; Okoreeh, E.K.; Moore, P.E. Composition of the essential oil of *Lomatium torreyi*. *J. Essent. Oil Res.* **1998**, *10*, 473–477. [CrossRef]
- 31. New York Botanical Garden. Starr Virtual Herbarium. Available online: https://sweetgum.nybg.org/science/vh/specimen-list/ ?SummaryData=Lomatium+anomalum (accessed on 9 June 2024).
- 32. New York Botanical Garden. Starr Virtual Herbarium. Available online: https://sweetgum.nybg.org/science/vh/specimen-list/ ?SummaryData=Lomatium+packardiae (accessed on 9 June 2024).
- 33. New York Botanical Garden. Starr Virtual Herbarium. Available online: https://sweetgum.nybg.org/science/vh/specimen-list/ ?SummaryData=Lomatium+triternatum (accessed on 20 May 2024).
- 34. Intermountain Region Herbarium Network. *Lomatium triternatum*. Available online: https://www.intermountainbiota.org/portal/collections/list.php (accessed on 20 May 2024).
- 35. New York Botanical Garden. Starr Virtual Herbarium. Available online: https://sweetgum.nybg.org/science/vh/specimen-list/ ?SummaryData=Lomatium+papilioniferum (accessed on 2 June 2024).
- New York Botanical Garden. Starr Virtual Herbarium. Available online: https://sweetgum.nybg.org/science/vh/specimen-list/ ?SummaryData=Lomatium+dissectum (accessed on 1 June 2024).
- 37. New York Botanical Garden. Starr Virtual Herbarium. Available online: https://sweetgum.nybg.org/science/vh/specimen-list/ ?SummaryData=Lomatium+multifidum (accessed on 1 June 2024).
- 38. Mathias, M.E. A revision of the genus Lomatium. Ann. Mo. Bot. Gard. 1938, 25, 225–297. [CrossRef]
- 39. Gucker, C.L.; Shaw, N.L. Barestem biscuitroot: *Lomatium nudicaule* (Pursh) J.M. Coult. & Rose. In *Western Forbs: Biology, Ecology, and Use in Restoration*; Gucker, C.L., Shaw, N.L., Eds.; Great Basin Fire Science Exchange: Reno, NV, USA, 2021; p. 17.
- 40. Tilley, D.; St. John, L. *Plant Guide for Barestem Biscuitroot (Lomatium nudicaule);* United States Department of Agriculture, Natural Resources Conservation Service, Idaho Plant Materials Center: Aberdeen, ID, USA, 2012.
- New York Botanical Garden. Starr Virtual Herbarium. Available online: https://sweetgum.nybg.org/science/vh/specimen-list/ ?SummaryData=Lomatium+nudicaule (accessed on 8 June 2024).
- Likens, S.T.; Nickerson, G.B. Detection of certain hop oil constituents in brewing products. *Proc. Annu. Meet. Am. Soc. Brew. Chem.* 1964, 22, 5–13. [CrossRef]

- 43. Au-Yeung, C.Y.; MacLeod, A.J. A comparison of the efficiency of the Likens and Nickerson extractor for aqueous, lipid/aqueous, and lipid samples. *J. Agric. Food Chem.* **1981**, *29*, 502–505. [CrossRef]
- 44. Bouseta, A.; Collin, S. Optimized Likens-Nickerson methodology for quantifying honey flavors. J. Agric. Food Chem. 1995, 43, 1890–1897. [CrossRef]
- 45. Poudel, A.; Dosoky, N.S.; Satyal, P.; Swor, K.; Setzer, W.N. Essential oil composition of *Grindelia squarrosa* from southern Idaho. *Molecules* **2023**, *28*, 3854. [CrossRef] [PubMed]
- 46. van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. *J. Chromatogr. A* **1963**, *11*, 463–471. [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4.
- 48. Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016.
- 49. NIST20; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020.
- Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Dissertation, University of Alabama in Huntsville, Huntsville, AL, USA, 2015.
- 51. Zar, J.H. Biostatistical Analysis, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1974; ISBN 0-13-084542-6.

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.