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Abstract: Thyme (Thymus vulgaris L.) is a commonly used flavoring agent and medicinal herb.
Several chemotypes of thyme, based on essential oil compositions, have been established, including
(1) linalool; (2) borneol; (3) geraniol; (4) sabinene hydrate; (5) thymol; (6) carvacrol, as well as a number
of multiple-component chemotypes. In this work, two different T. vulgaris essential oils were obtained
from France and two were obtained from Serbia. The chemical compositions were determined
using gas chromatography—mass spectrometry. In addition, chiral gas chromatography was used
to determine the enantiomeric compositions of several monoterpenoid components. The T. vulgaris
oil from Nyons, France was of the linalool chemotype (linalool, 76.2%; linalyl acetate, 14.3%); the oil
sample from Jablanicki, Serbia was of the geraniol chemotype (geraniol, 59.8%; geranyl acetate, 16.7%);
the sample from Pomoravje District, Serbia was of the sabinene hydrate chemotype (cis-sabinene
hydrate, 30.8%; trans-sabinene hydrate, 5.0%); and the essential oil from Richerenches, France
was of the thymol chemotype (thymol, 47.1%; p-cymene, 20.1%). A cluster analysis based on the
compositions of these essential oils as well as 81 additional T. vulgaris essential oils reported in the
literature revealed 20 different chemotypes. This work represents the first chiral analysis of T. vulgaris
monoterpenoids and a comprehensive description of the different chemotypes of T. vulgaris.

Keywords: chiral gas chromatography; mass spectrometry; hierarchical cluster analysis; antifungal
activity; enantiomeric distribution

1. Introduction

Thymus vulgaris L. (Lamiaceae) is an evergreen herb native to the southern Europe and the
Mediterranean [1]. The plant has been used since ancient times as a culinary ingredient, to add flavor
to cheeses [2,3] and liqueurs [4,5], and to flavor meats such as rabbit, boar, and lamb [6]. Today it
is a common component of bouquet garni [7] and of herbes de Provence [8]. In addition to its use in
foods, T. vulgaris is a well-known herbal medicine that has been used for thousands of years to treat
alopecia, dental plaque, dermatophyte infections, bronchitis, cough, inflammatory skin disorders, and
gastrointestinal distress [9]. The major constituents of commercial T. vulgaris essential oil are thymol
(23%—60%), y-terpinene (18%-50%), p-cymene (8%—44%), carvacrol (2%—-8%), and linalool (3%—4%) [10].
T. vulgaris oil as well as thymol have shown antibacterial, antifungal, and anti-inflammatory effects,
accounting for the medicinal uses of T. vulgaris [9]. There are, however, numerous varieties and cultivars
of T. vulgaris; Tropicos lists nine subspecies and varieties of T. vulgaris [11]. As many as 13 different
chemotypes of T. vulgaris, based on the predominance of particular monoterpenoids in the essential
oils, have been identified [12-15]. In this work, we present the essential oil compositions, including
monoterpenoid enantiomeric compositions, of four different chemotypes of T. vulgaris essential oils
from Europe. In addition, a hierarchical cluster analysis has been carried out to elucidate/delineate the
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various chemotypes of T. vulgaris, and we have examined the antifungal properties of three essential
oils from Europe.

2. Materials and Methods

2.1. Plant Material

Thymus vulgaris #1, (linalool chemotype), T. vulgaris #3, (geraniol chemotype), T. vulgaris #4,
(sabinene hydrate chemotype), and T. vulgaris #5, (thymol chemotype) were collected in May
2015, from Nyons, France (44°21'37" N, 5°8'23"" E), Jablanicki, Serbia (42°59'43"" N, 21°55'4"" E),
Pomoravije District, Serbia (43°58'0" N, 21°15'0"’ E) and Richerenches, France (44°21'37" N, 4°54'47" E),
respectively. The plants were identified by Julien Abisset (Natural Essential SA, France). The air-dried
aerial parts of each T. vulgaris sample were subjected to steam distillation for 3 h. After decanting and
drying of the oils over anhydrous sodium sulfate, they were stored under refrigeration (—4 °C) until
analysis. Aerial parts of T. vulgaris #1 produced 1.6% yield of essential oil (EO), T. vulgaris #3 produced
1.2% yield, T. vulgaris #4 produced 1.0% yield, and T. vulgaris #5 produced 1.5% yield.

2.2. Gas Chromatography—~Mass Spectrometry (GC-MS)

The essential oils of T. vulgaris chemotypes were analyzed by GC-MS using a Shimadzu
GCMS-QP2010 Ultra operated in the electron impact (EI) mode (electron energy = 70 eV), scan range
= 40-400 amu, scan rate = 3.0 scans/sec, and GC-MS solution software. The GC column was a ZB-5
fused silica capillary column with a (5% phenyl)-polymethylsiloxane stationary phase and a film
thickness of 0.25 um. The carrier gas was helium with a column head pressure of 80 psi and flow rate
of 1.37 mL/min. Injector temperature was 250 °C and the ion source temperature was 200 °C. The GC
oven temperature program was programmed for 50 °C initial temperature, temperature increased at
a rate of 2 °C/min to 260 °C. A 5% w/v solution of the sample in CH,Cl, was prepared and 0.1 uL was
injected with a splitting mode (30:1). Identification of the oil components was based on their retention
indices determined by reference to a homologous series of n-alkanes, and by comparison of their mass
spectral fragmentation patterns with those reported in the literature [16], and stored in our in-house
MS library.

2.3. Chiral Gas Chromatography—Mass Spectrometry

Chiral analysis of the essential oils was performed on a Shimadzu GCMS-QP2010S operated in the
EI mode (electron energy = 70 eV), scan range = 40—400 amu, scan rate = 3.0 scans/s. GC was equipped
with a Restek B-Dex 325 capillary column (30 m x 0.25 mm ID x 0.25 pm film). Oven temperature
was started at 50 °C, and then gradually raised to 120 °C at 1.5 °C/min. The oven was then raised to
200 °C at 2 °C/min and held for 5 min. Helium was the carrier gas and the flow rate was maintained
at 1.8 mL/min. Samples were diluted 3% w/v with CH,Cl, and then a 0.1 uL sample was injected in
a split mode with a split ratio of 1:45.

2.4. Hierarchical Cluster Analysis

A total of 81 T. vulgaris essential oil compositions from the published literature, as well
as the four compositions from this study were treated as operational taxonomic units (OTUs).
The percentage composition of 33 major essential oil components (thymol, p-cymene, y-terpinene,
linalool, carvacrol, geraniol, 3-caryophyllene, cis-sabinene hydrate, borneol, x-pinene, terpinene-4-ol,
myrcene, 1,8-cineole, x-terpineol, camphene, «-terpinyl acetate, x-terpinene, camphor, limonene,
B-pinene, geranyl acetate, x-thujene, geranyl formate, (3-cyclocitral, cis-verbenol, trans-sabinene
hydrate, 1-octen-3-ol, thymol methyl ether, caryophyllene oxide, carvacrol methyl ether, bornyl acetate,
thymoquinone, and a-humulene) was used to determine the chemical relationship between the various
T. vulgaris essential oil samples by agglomerative hierarchical cluster (AHC) analysis using the XLSTAT
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software, version 2015.4.01. Pearson correlation was selected as a measure of similarity, and the
unweighted pair-group method with arithmetic average (UPGMA) was used for cluster definition.

2.5. Antifungal Screening

Antifungal activity was carried out using Candida albicans (ATCC #18804), Cryptococcus neoformans
24067 (serotype D or var. neoformans), and Aspergillus niger (ATCC #16888). Qualitative assessment of
antifungal activity utilized broth macrodilution (for C. albicans and C. neoformans), whereas minimum
inhibitory concentrations (MIC) were determined using microdilution methods. Initially cultures
were grown on potato dextrose agar for 48-72 h before a single colony was isolated and grown in
potato dextrose broth for 48-72 hours to create initial liquid cultures. Cells were diluted to a final
concentration of 2 x 10° cells/mL using MOPS (3-(N-morpholino)propanesulfonic acid) buffered
RPMI (Roswell Park Memorial Institute) medium and 900 uL were aliquoted into sterile 12 x 75 mm
tubes. Each T. vulgaris essential oil (100 uL of 1% DMSO solution) was added to each tube, which were
then incubated at 37 °C for 72 h in a shaking incubator (175 rpm). For determination of the MIC for
C. albicans and C. neoformans, microdilution in 96-well plates was performed in triplicate. Briefly, serial
dilution of the T. vulgaris samples was performed by adding 50 puL of RPMI to each well then an equal
volume of sample to be tested to the first row. After mixing, 50 pL was removed and added to the next
row. The procedure was repeated for each row. To this mixture, 50 pL of cells diluted to 2000 cells/mL
in RPMI were added to each well. The plates were incubated for 48 hours at 37 °C before growth was
quantitated visually based on turbidity.

For the mold-like Ascomycota A. niger, disk diffusion was used to characterize each T. vulgaris
essential oil. Initial cultures were grown on malt extract agar for 5-7 days before conidia were collected
and suspended in potato dextrose broth. The suspension was then filtered into a sterile test tube
using cheesecloth to remove hyphae. Conidia suspension was then diluted until it reached an ODg;5
of 0.1-0.2. The suspension (100 uL) was plated on malt extract agar before a sterile filter paper disk
was placed in the center and 50 uL of T. vulgaris essential oil was added. The culture was grown for
4-5 days at 25 °C before zones of inhibition were determined.

3. Results and Discussion

3.1. Essential Oil Compositions

The chemical compositions of T. vulgaris essential oils from this study are listed in Table 1.
T. vulgaris sample #1, a linalool chemotype collected from Nyons, France, was dominated by linalool
(76.15%) and linalyl acetate (14.26%). The enantiomeric ratios of these two compounds were 1:99 D/L.
Other compounds in the oil were 3-caryophyllene (2.27%), camphor (1.79%, 100% D enantiomer),
and camphene (1.17%, D/L ratio = 99:1). T. vulgaris #3 was a geraniol chemotype collected from
Jablanicki, Serbia, and was rich in geraniol (59.75%) and esters of geraniol, geranyl acetate (16.72%)
and geranyl propionate (1.26%). Oil #3 also had sizable concentrations of linalool (7.15%, D/L
ratio = 97:3) and -caryophyllene (3.67%). T. vulgaris #4 was collected from Pomoravje District,
Serbia, and had sabinene hydrates as defining compounds with cis-sabinene hydrate (30.77%, D/L
ratio = 97:3) and trans-sabinene hydrate (4.98%). Other major components in o0il #4 were terpinene-4-ol
(9.50%, D/L = 30:70), linalool (7.89%, D/L = 3:97), y-terpinene (4.58%), and myrcene (4.09%). T. vulgaris
#5, representing the thymol chemotype, was collected from Richerenches, France. The composition
of oil #5 was rich in thymol (47.06%) and p-cymene (20.07%) with lesser quantities of linalool (5.00%,
D/L = 1:99) and carvacrol (3.24%). Interestingly, the L-enantiomer dominated linalool in samples
#1, #4, and #5, but was reversed in sample #3. Ozek and co-workers have found L-linalool to be the
predominant enantiomer in several Thymus species, but apparently they did not examine T. vulgaris [17].
Similarly, D-terpinen-4-ol was the major enantiomer in sample #3, but a minor one in samples #4 and #5.
An enantiomeric composition analysis of Melaleuca alternifolia revealed this essential oil to be composed
of mostly D-cis-sabinene hydrate and D-terpinen-4-ol [18]. D-a-Thujene was the dominant enantiomer
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in samples #3 and #4, while L-x-thujene predominated in sample #5. The L-enantiomer of o-thujene
was found to be predominant in various Citrus essential oils [19]. L-a-Pinene dominated samples #1
and #3, but D-a-pinene was the major enantiomer in #4. Sample #5 showed a nearly racemic mixture
of o-pinenes. L-Camphene dominated samples #1 and #3, but D-camphene dominated #4 and #5. Both
D-a-pinene and D-camphene were found to be the predominant enantiomers in Ocimum canum and
O. kilimandscharicum essential oils [20]. Remarkably, both D-camphor and D-borneol were the only
enantiomers in sample #1, and D-borneol was also the only enantiomer found in samples #3 and #4.
However, only L-camphor was found in essential oils #3 and #4. This is in contrast to the results of
Tabanca and co-workers, who had exclusively observed the L-enantiomers of borneol along with 99%
L-camphor in Micromeria cristata subsp. phrygia [21]. Thus, not only are the chemical profiles different
between the different chemotypes, but the enantiomeric distributions are also profoundly different.

Table 1. Chemical compositions and enantiomeric distributions of Thymus vulgaris essential oils.

RI Compound " i # #
% D/L % D/L % D/L % D/L
752 3-Methyl-1-penten-3-ol tr
783 Methyl «-methyl butyrate 0.10 0.07 tr tr
850 (3Z)-Hexenol 0.05
922 Tricyclene 0.05 tr 0.09
924 a-Thujene tr tr 91:9 071 8713 043 10:90
932 o-Pinene 047 199 021 199 175 8515 132 52:48
947 «-Fenchene tr
948 Camphene 117 991 038 991 025 0:100 1.19 10:90
971 Sabinene tr 0.05 982 203 7822
977 1-Octen-3-ol 0.43 0.42
977 1-Octen-3-ol + 3-Pinene 097 20:80 0.54 20:80
983 6-Methylhept-5-en-2-one 0.05
983 3-Octanone tr tr
988 Myrcene 0.09 0.44 4.09 1.59
996 3-Octanol tr 0.07 tr
1004 (3Z)-Hexenyl acetate tr
1004 p-Mentha-1(7),8-diene tr
1006 «-Phellandrene tr 55:45 0.11
1008 5-3-Carene tr
1016 o-Terpinene tr 2.65 1.30
1019 0-Cymene 0.06
1024 p-Cymene 0.09 0.18 1.09 20.07
1028 Limonene 0.05 039 8515 285 86:14 0.39 80:20
1030 B-Phellandrene tr 0.37 0.09
1031 1,8-Cineole 0.37 0.31 0.30 0.72
1033 m-Cymene tr
1034 Lavender lactone + (Z)-3-Ocimene tr
1045 (E)-B-Ocimene tr 0.05
1057 y-Terpinene 0.09 4.58 9.03
1063 3-Methylbut-2-enyl butanoate tr
1069 cis-Sabinene hydrate 0.31 30.77 97:3 0.17
1070 cis-Linalool oxide (furanoid) 0.28
1071 Pinol tr
1084 Terpinolene 0.97 0.07
1085 trans-Linalool oxide (furanoid) 0.23 tr
1089 p-Cymenene tr
1099 Linalool 7615 1:99 715 973 789 397 500 1:99
1101 trans-Sabinene hydrate tr 4.98 tr
1103 Hotrienol 0.07
1104 Nonanal 0.05 tr
1106 a-Pinene oxide tr
1107 1-Octen-3-yl acetate tr tr
1124 cis-p-Menth-2-en-1-ol 0.65
1136 trans-Limonene oxide tr
1142 trans-p-Menth-2-en-1ol 0.25
1147 Camphor 1.79 100:0 0.11 0:100 0.10 0:100 142 955
1148 a-Cyclogeraniol tr

1154 B-Pinene oxide 0.05
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Table 1. Cont.

RI Compound #1 #3 #4 #5
% D/L % D/L % D/L % D/L
1162 Lavandulol tr tr tr
1169 cis-Linalool oxide (pyranoid) tr
1171 Borneol 040 100:0 1.00 100:0 028 100:0 1.50 71:29
1174 trans-Linalool oxide (pyranoid) tr
1178 p-Mentha-1,8-dien-4-ol tr
1180 Terpinen-4-ol 0.06 0.17 7030 9.50 30:70 125 40:60
1184 (3Z)-Hexenyl butanoate tr
1186 p-Cymen-8-ol tr
1194 a-Terpineol 011 6535 0.09 6535 269 91:9 016 60:40
1196 cis-Piperitol 0.14
1197 cis-Dihydrocarvone tr tr tr
1205 B-Cyclogeraniol tr
1206 Decanal tr
1208 trans-Piperitol 0.16
1217 7-Ethylidenebicyclo[3.3.0]octan-3-one 0.90
1220 6,7-Epoxyneral tr
1223 Nerol tr 0.97
1223 7-Methylenebicyclo[3.3.1]nonan-3-ol 6.07
1225 Citronellol tr 0.35
1228 Thymol methyl ether 0.19
1230 6,7-Epoxygeranial tr
1234 4-t-Amylcyclohexanone 0.08
1237 Neral tr 0.61 tr
1237 Carvacrol methyl ether 0.32
1243 Carvone tr 0.09
1249 Linalyl acetate 1426 1:99 3.40  0:100
1249 Geraniol 59.75 0.24 0.05
1266 Geranial tr 1.25 tr tr
1271 (2E)-Decenal tr
1279 Isothymol 0.07
1282 Lavandulyl acetate tr
1284 Bornyl acetate 0.21 0.14 0.07
1284 neo-iso-3-Thujanol acetate tr
1288 Thymol 0.42 tr 47.06
1296 Carvacrol 0.05 3.24
1296 Geranyl formate 0.09
1331 2,3-Epoxygeraniol 0.06
1341 cis-p-Menthadienyl acetate 0.19 4.75
1344 Citronellyl acetate 0.28
1346 o-Terpinyl acetate 0.05
1348 Citronellyl acetate 0.07
1349 Eugenol 0.08
1357 Neryl acetate tr 0.18 tr
1372 trans-p-Menthadienyl acetate 0.05
1375 x-Copaene tr
1377 Geranyl acetate 0.06 16.72 0.48
1383 a-Bourbonene 0.20 tr 0.09
1388 B-Elemene tr
1403 Isocaryophyllene tr tr
1419 -Caryophyllene 227 3.67 2.03 1.79
1429 3-Copaene tr
1429 cis-Carvyl propanoate 0.30
1434 7-Methyl-3-methylene-7-octen-1-yl r
propanoate
1437 Aromadendrene tr
1454 a-Humulene 0.06 0.12 0.06 0.05
1468 Geranyl propanoate tr 1.26
1473 trans-Cadina-1(6),4-diene 0.06
1480 Germacrene D 0.26 0.05 0.58
1489 Viridiflorene tr
1494 Bicyclogermacrene tr 0.09
1497 «-Muurolene tr
1506 Geranyl isobutyrate 0.15
1506 {3-Bisabolene tr
1511 d-Amorphene 0.07

1516 5-Cadinene tr 0.16
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Table 1. Cont.

RI Compound #1 #3 #4 #5
% D/L % D/L % D/L % D/L

1531 trans-Cadina-1,4-diene tr
1547 Elemol 0.96
1554 Geranyl butanoate 0.05 0.74
1575 Germacrene-D-4-0l 0.10 tr
1575 Spathulenol tr
1581 Caryophyllene oxide 0.41 0.50 0.10 0.13
1595 Geranyl isovalerate 0.06
1631 10-epi-y-Eudesmol tr
1654 x-Eudesmol 0.17

3.2. Chemotypes of Thymus vulgaris

A total of 85 T. vulgaris essential oil compositions were used to carry out a hierarchical
cluster analysis (Figure 1). The cluster analysis revealed as many as 20 different chemotypes.
The chemotype with the most samples (39) was the thymol chemotype, which had been recognized
previously [12-15]. Other previously recognized chemotypes were the geraniol chemotype, with three
representative samples (including sample #3 from Serbia in this study); the linalool chemotype,
with four samples (including sample #1 from France in this study); the carvacrol chemotype,
with two samples; the borneol chemotype, only one sample; the sabinene hydrate/terpinene-4-ol
chemotype, with two samples (including sample #4 from Serbia in this study); and the
cyclocitral /verbenol chemotype, with only one sample. The second most populated chemotype
in the cluster analysis was a p-cymene/thymol type represented by 18 samples. The «-terpineol
chemotype [12] was not found in the present study; only three T. vulgaris samples (all from
Austria) showed a-terpineol concentrations around 10%, but all three had higher concentrations
of other components [14]. Other chemotypes identified include carvacrol/y-terpinene/thymol, which
was previously described as carvacrol and thymol/carvacrol [14]; linalool/carvacrol/p-cymene,
previously labeled carvacrol/linalool [14]; sabinene hydrate/geraniol /geranyl acetate/ «-terpineol,
previously described as geraniol/ a-terpineol/sabinene hydrate [14]; sabinene hydrate/ «-terpinyl
acetate/thymol, previously described as «-terpineol/sabinene hydrate/thymol [14]; sabinene
hydrate/linalool [14]; x-terpinyl acetate/carvacrol, previously described as x-terpineol/carvacrol [14];
carvacrol/ «-terpineol /borneol; sabinene hydrate/ terpinen-4-ol, which includes one of the samples
from France in this study; geranyl formate/geraniol, previously called geraniol [13]; p-cymene/
thymol/carvacrol; terpinene-4-ol/p-cymene; camphor/camphene; and 1,8-cineole/ «-terpinyl acetate.
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Figure 1. Dendrogram obtained from the agglomerative hierarchical cluster analysis of 85 Thymus vulgaris essential oil compositions.
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3.3. Antifungal Activity

Three of the four T. vulgaris chemotypes in this study were tested for inhibition of Aspergillus niger,
Cryptococcus neoformans var. neoformans, and Candida albicans. Macrodilution was utilized for the
yeast-like Ascomycota, C. albicans, and Basidiomycota C. neoformans, to determine antifungal minimum
inhibitory concentrations (MICs, Table 2). The T. vulgaris linalool and geraniol chemotypes both
demonstrated some degree of inhibition against these pathogens. For the sporulating mold-like
Ascomycota, A. niger, a larger surface area was required for hyphal growth. Thus, it was grown
on malt extract agar plates with a filter disk impregnated with the T. vulgaris chemotype of interest.
Disk diffusion showed only slight inhibition of A. niger with the only clear zone of inhibition for
T. vulgaris sample #1. The remaining chemotypes showed growth over the filter disk, indicating no
significant antifungal activity against A. niger. Because it has been shown that linalool is biotransformed
to non-pathogenic compounds and that linalyl acetate increases A. niger hyphal growth [64], it is
speculated that camphor in sample #1 is responsible for A. niger inhibition. Significant levels of
camphor are not found in the other T. vulgaris samples.

Table 2. Antifungal activities (minimum inhibitory concentrations, MIC) of Thymus vulgaris essential oils.

Essential Oil MIC (ug/mL)
C. albicans C. neoformans
#1 (linalool chemotype) 1250 313
#3 (geraniol chemotype) 625 156
#4 (sabinene hydrate chemotype) >2500 >2500

The differential antifungal activities observed in this study mirror those previously reported by
Giordani and co-workers [13]. That is, the sabinene hydrate chemotype showed the lowest antifungal
activity, the linalool chemotype was next, then the geraniol chemotype. Giordani and co-workers
had found that the thymol chemotype showed much stronger antifungal activity [13]. The T. vulgaris
thymol chemotype was also found to be the most larvicidal against Culex quinquefasciatus [15] and
exhibited the most antioxidant properties [14].

4. Conclusions

This work has presented the most comprehensive analysis of Thymus vulgaris chemotypes,
revealing at least 20 different types based on essential oil composition. In addition, this is the first
analysis to characterize the enantiomeric distributions of T. vulgaris monoterpenoids. Enantiomers
are well known to elicit different odorant responses in insects [65,66] as well as humans [67], and it is
reasonable to assume that different enantiomers will have different medicinal biological activities [68].
Thus, for example L-linalool has shown anticonvulsant activity in a mouse model whereas D-linalool
was inactive [69]. Similarly, both D-x-pinene and D-3-pinene showed antifungal activity whereas the
L-enantiomers were inactive [70], while L-a-pinene was more active than the D-enantiomer against
Listeria monocytogenes [71]. Therefore, not only is the particular chemotype of a culinary and medicinal
herb such as T. vulgaris an important consideration, but the enantiomeric distribution may also have
a profound influence on its bioactivity, flavor, and aroma profile.
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