

Composition of *Helichrysum thianschanicum* Regel essential oil from Pamir (Tajikistan)

Farukh S. Sharopov^{a,b,c}, Vasila A. Sulaymonova^a, Yanfang Sun^d, Sodik Numonov^b, Isomiddin S. Gulmurodov^c, Abdujabbor Kh. Valiev^c, Haji Akber Aisa^b and William N. Setzer^{e,f,*}

^aV.I.Nikitin Institute of Chemistry, Tajik Academy of Sciences, Ainy St. 299/2, Dushanbe, 734063, Tajikistan

^bKey Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China

^cDepartment of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003, Dushanbe, Tajikistan

^dCollege of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China

^eDepartment of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA

^fAromatic Plant Research Center, 615 St. George Square Court, Suite 300, Winston-Salem, NC 27103, USA

wsetzer@chemistry.uah.edu

Received: November 20th, 2017; Accepted: XX, 2017

Helichrysum thianschanicum Regel was collected from Khorugh town of Kuhistoni Badakhshon Autonomous Province of Tajikistan. The essential oil was obtained by hydrodistillation and analyzed by gas chromatography – mass spectrometry. A total of 67 compounds were identified representing 88.4% of the total essential oil composition. The major components of *H. thianschanicum* essential oil were (*E*)-1-(6,10-dimethylundec-5-en-2-yl)-4-methylbenzene (pentylcurcumene) (21.6%), β -selinene (6.4%), δ -selinene (3.8%), (2*E*,6*E*)-farnesol (3.3%), nerol (4.1%) and neryl decanoate (4.2%). To our best knowledge, no previous studies have been reported on the chemical composition of the essential oil of *H. thianschanicum*.

Keywords: pentylcurcumene, selinene, *Helichrysum thianschanicum* Regel, essential oil composition.

Helichrysum thianschanicum Regel (Asteraceae) is a member of the genus *Helichrysum* Mill., includes about 500 species, widespread throughout the Old World [1a]. The plant has several synonyms: *H. arenarium* var. *kokanicum* Regel & Schmalh.; *He. kokanicum* (Regel & Schmalh.) Krasch & Gontsch.; *H. thianschanicum* var. *aureum* O. Fedtsch. & B. Fedtsch [1b] and *Xerochrysum bracteatum* (Vent.) Tzvelev [1c]. *H. thianschanicum*, locally named “guli ghozi” or “ghozichoy”, is a perennial herb growing up to 40 cm. [1d]. As a traditional medicine, herbal tea from *H. thianschanicum* flowers are used to treat liver diseases, gall bladder disorders, jaundice, tuberculosis, for removing the kidney stones, as a diuretic and as an anthelmintic [1e]. To our knowledge, no previous studies have been reported on the phytochemistry of *H. thianschanicum*. In this report, we present the essential oil (EO) composition of *H. thianschanicum* collected from Tajikistan.

H. thianschanicum, in the flowering phase, was collected from the town of Khorugh, Kuhistoni Badakhshon Autonomous Province, Tajikistan, and the yellow EO was obtained in 0.2% yield by hydrodistillation. The chemical compositions of the EO was determined by GC-MS (see Table 1). A total of 67 compounds were identified representing 88.4% of the EO composition. The major components of *H. thianschanicum* EO were pentylcurcumene (21.6%), β -selinene (6.4%), δ -selinene (3.8%), (2*E*,6*E*)-farnesol (3.3%), nerol (4.1%) and neryl decanoate (4.2%). A number of studies have been carried out on chemical compositions of EO of different species of *Helichrysum* [2]. The floral EO of *H. italicum* is an article of commerce and is reputed to be beneficial for skin care as well as anti-inflammatory and immunomodulatory effects [3]. The *H. italicum* EO are generally rich in neryl acetate, neryl propionate, and γ -curcumene, but may also contain significant quantities of α -pinene or limonene [4]. The results from this current

study are in agreement with previously reported *Helichrysum* EO compositions. *Helichrysum* EO are generally dominated by monoterpenoids and sesquiterpenoids with the predominant metabolites α -pinene, linalool, *p*-cymene, β -selinene, γ -curcumene, β -caryophyllene, caryophyllene oxide, caryophyllenol, neryl acetate, eudesmen-7(11)-en-4-ol, and neryl propionate. In contrast, however, the aromatic hydrocarbon pentylcurcumene [(*E*)-1-(6,10-dimethylundec-5-en-2-yl)-4-methylbenzene] was found as the major component in the EO of *H. thianschanicum*. Recently, pentylcurcumene was found in the EO of *Geophila repens* [5a] and *Zingiber officinalis* [5b].

Experimental

Plant Material: Aerial parts of *H. thianschanicum* were collected from Khorugh town of Kuhistoni Badakhshon Autonomous Province of Tajikistan on 9 September 2016. The plant was identified by comparison the voucher specimen (K000978204), deposited in the herbarium of the Royal Botanic Gardens, Kew (Richmond TW9 3AB, UK) [6]. The air-dried sample was crushed and hydrodistilled for 3 h to give the EO.

Gas Chromatographic-Mass Spectral Analysis: GC-MS analysis was performed on the EO of *H. thianschanicum* using an Agilent 6890 GC with Agilent 5973 MSD and HP-5ms capillary column as described previously [7]. Identification of the EO components was based on retention indices (RI) and mass spectral fragmentation patterns with those reported in the literature [8], and our own in-house database.

Acknowledgments – FSS is grateful to the Fulbright Program for financial support in the USA. WNS thanks the Aromatic Plant Research Center for support.

Table 1: Essential oil composition of *Helichrysum thianschanicum* from Tajikistan.

RI ^a	Compound	%	RI ^b	Compound	%	RI	Compound	%
941	α -Pinene	2.2	1365	Neryl acetate	0.2	1640	τ -Cadinol	0.3
952	α -Fenchene	0.2	1367	Decanoic acid	0.2	1654	Selin-11-en-4 α -ol	1.9
992	Myrcene	0.1	1384	(<i>E</i>)- β -Damascenone	0.2	1657	Valerenol	0.4
1024	<i>p</i> -Cymene	0.1	1388	Unidentified sesquiterpene C ₁₅ H ₂₂ ^b	1.5	1670	Unidentified neryl or geranyl ester ^f	2.2
1027	Limonene	0.2	1401	γ ,4-Dimethylbenzenebutanal	0.6	1683	<i>epi</i> - α -Bisabolol	1.4
1036	Santolina alcohol	0.1	1409	α -Gurjunene	0.2	1685	α -Bisabolol	0.3
1058	γ -Terpinene	0.3	1435	Neryl acetone	0.5	1695	Neryl isohexanoate	0.6
1071	<i>n</i> -Octanol	0.2	1438	Aromadendrene	0.7	1707	Pentadecanal	0.3
1072	<i>cis</i> -Linalool oxide (furanoid)	0.2	1447	Unidentified sesquiterpenoid (C ₁₅ H ₂₆ O) ^c	1.5	1730	Neryl hexanoate	0.8
1087	Terpinolene	0.2	1454	Geranyl acetone	0.2	1743	(2 <i>E</i> ,6 <i>E</i>)-Farnesol	3.3
1100	Linalool	3.1	1475	β -Chamigrene	1.1	1764	Myristic acid (= Tetradecanoic acid)	0.3
1104	<i>cis</i> -Thujone (= α -Thujone)	0.6	1481	γ -Circumene	1.1	1789	Neryl isooctanoate	0.6
1112	<i>endo</i> -Fenchol	0.5	1486	β -Selinene	6.4	1829	Neryl heptanoate	1.0
1115	<i>trans</i> -Thujone (= β -Thujone)	0.5	1492	Neryl isobutanoate	0.3	1873	Unidentified diterpene (C ₂₀ H ₃₂) ^g	2.3
1120	<i>exo</i> -Fenchol	0.6	1495	δ -Selinene	3.8	1896	Unidentified diterpene (C ₂₀ H ₃₂) ^h	1.4
1125	α -Campholenal	0.2	1511	Tridecanal	0.7	1913	Pentylcicumene	21.6
1137	<i>trans</i> -Pinocarveol	0.2	1524	δ -Cadinene	0.2	1919	Neryl octanoate	2.7
1163	Borneol	1.6	1539	2-Phenylethyl angelate	0.2	2124	Neryl decanoate	4.2
1175	Terpinen-4-ol	2.3	1564	(<i>E</i>)-Nerolidol	1.2		Total identified	88.4
1189	α -Terpineol	3.0	1579	Pacifigorgiol	2.6		Monoterpene hydrocarbons	3.3
1205	<i>n</i> -Decanal	0.1	1583	Globulol	1.5		Oxygenated monoterpenoids	32.0
1226	Nerol	4.1	1591	Viridiflorol	0.2		Sesquiterpene hydrocarbons	13.5
1235	Pulegone	0.3	1594	Cubeban-11-ol	0.1		Oxygenated Sesquiterpene	14.1
1253	<i>cis</i> -Piperitone epoxide	1.0	1599	Fokienol	0.2		Aromatic hydrocarbons	22.3
1269	Nonanoic acid	0.1	1609	Unidentified sesquiterpenoid (C ₁₅ H ₂₆ O) ^d	1.0		Phenols	1.7
1291	Thymol	0.9	1618	Unidentified sesquiterpenoid (C ₁₅ H ₂₆ O) ^e	3.9		Others	1.4
1300	Carvacrol	0.8	1627	1- <i>epi</i> -Cubenol	0.4			

^a RI = "Retention Index", determined in reference to a homologous series of *n*-alkanes on an HP-5ms column. ^b MS, m/z: 192(3), 174(6), 160(13), 159(100), 147(22), 131(23), 119(55), 107(42), 105(57), 93(32), 91(60), 79(26), 77(23), 55(17). ^c MS, m/z: 222(35), 207(30), 166(9), 151(79), 124(28), 111(34), 110(30), 98(72), 83(100), 69(20), 55(30). ^d MS, m/z: 207(52), 204(51), 189(48), 161(31), 147(30), 135(58), 123(40), 109(50), 95(68), 93(43), 82(60), 81(100), 71(67), 69(52), 67(61), 57(60), 55(77). ^e MS, m/z: 222(5), 204(12), 189(8), 161(13), 148(17), 140(40), 139(79), 123(30), 111(38), 109(33), 95(30), 83(57), 82(100), 72(39), 69(48), 67(40), 57(32), 55(47). ^f MS, m/z: 204(2), 189(3), 161(5), 136(5), 121(11), 109(15), 107(13), 95(18), 93(32), 81(50), 69(100), 67(18), 55(17), 53(11). ^g MS, m/z: 272(6), 187(39), 161(15), 159(30), 145(18), 134(30), 132(68), 121(59), 119(100), 107(25), 105(46), 93(38), 91(30), 81(23), 69(76), 55(24). ^h MS, m/z: 272(7), 187(33), 161(16), 159(27), 145(19), 134(32), 132(64), 121(62), 119(100), 107(25), 105(48), 93(38), 91(33), 81(27), 69(83), 55(25).

References

- [1] (a) Mabberley DJ. (2008) *Mabberley's Plant-Book*. 3rd ed. Cambridge University Press, Cambridge, UK; (b) Missouri Botanical Garden. (2017) Tropicos.org. Available from: www.tropicos.org; (c) Bayernflora-Bearbeiter. (2017) Botanischer Informationsknoten Bayern. Available from: http://daten.bayernflora.de/de/info_pflanzen.php?taxnr=35447&suchtext=&g=&de=&prev=prev; (d) Cullen J, Alexander JCM, Brickell CD, Edmondson JR, Green PS, Heywood VH, Jørgensen PM, Jury SL, Knees SG, Maxwell HS, Miller DM, Robson NKB, Walters SM, Yeo PF. (2000) *The European Garden Flora*. Cambridge University Press, Cambridge, UK; (e) Hojimatov M. (1989) *Dikorastushie lekarstvennie rasteniya Tadzhikistana*. Tadj. Sovet. Ensclopedii, Dushanbe, Tajikistan, 368.
- [2] (a) Tsoukatou M, Roussis V, Chinou I, Petrakis P V, Ortiz A. (1999) Chemical composition of the essential oils and headspace samples of two *Helichrysum* species occurring in Spain. *Journal of Essential Oil Research*, **11**(4), 511–516; (b) Roussis V, Tsoukatou M, Petrakis P V, Chinou I, Skoula M, Harborne JB. (2000) Volatile constituents of four *Helichrysum* species growing in Greece. *Biochemical Systematics and Ecology*, **28**, 163–175; (c) Cavalli J-F, Ranarivelo L, Ratsimbason M, Bernardini A-F, Casanova J. (2001) Constituents of the essential oil of six *Helichrysum* species from Madagascar. *Flavour and Fragrance Journal*, **16**, 253–256; (d) Lourens ACU, Reddy D, Bašer KHC, Viljoen AM, van Vuuren SF. (2004) *In vitro* biological activity and essential oil composition of four indigenous South African *Helichrysum* species. *Journal of Ethnopharmacology*, **95**, 253–258; (e) Bougatsos C, Ngassapa O, Runyoro DKB, Chinou IB. (2004) Chemical composition and *in vitro* antimicrobial activity of the essential oils of two *Helichrysum* species from Tanzania. *Zeitschrift für Naturforschung C*, **59c**, 368–372; (f) Reidel RVB, Cioni PL, Ruffoni B, Cervelli C, Pistelli L. (2017) Aroma profile and essential oil composition of *Helichrysum* species. *Natural Product Communications*, **12**, 977–982.
- [3] Guinoiseau E, Lorenzi V, Luciani A, Muselli A, Costa J, Casanova J, Berti L. (2013) Biological properties and resistance reversal effect of *Helichrysum italicum* (Roth) G. Don. In *Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education*, Vol 2. Méndez-Vilas A (Ed). Formatex Research Center, Badajoz, Spain. 1073–1080.
- [4] (a) Satta M, Tuberoso CIG, Angioni A, Pirisi FM, Cabras P. (1999) Analysis of the essential oil of *Helichrysum italicum* G. Don ssp. *microphyllum* (Willd.) Nym. *Journal of Essential Oil Research*, **11**(6), 711–715; (b) Bianchini A, Tomi P, Bernardini AF, Morelli I, Flamini G, Cioni PL, Usaï M, Marchetti M. (2003) A comparative study of volatile constituents of two *Helichrysum italicum* (Roth) Guss. Don Fil subspecies growing in Corsica (France), Tuscany and Sardinia (Italy). *Flavour and Fragrance Journal*, **18**, 487–491; (c) Angioni A, Barra A, Arlorio M, Coisson JD, Russo MT, Pirisi FM, Satta M, Cabras P. (2003) Chemical composition, plant genetic differences, and antifungal activity of the essential oil of *Helichrysum italicum* G. Don ssp. *microphyllum* (Willd.) Nym. *Journal of Agricultural and Food Chemistry*, **51**, 1030–1034; (d) Paolini J, Desjobert J-M, Costa J, Bernardini A-F, Castellini CB, Cioni PL, Flamini G, Morelli I. (2006) Composition of essential oils of *Helichrysum italicum* (Roth) G. Don fil subsp. *italicum* from Tuscan archipelago islands. *Flavour and Fragrance Journal*, **21**, 805–808; (e) Perrini R, Morone-Fortunato I, Lorusso E, Avato P. (2008) Glands, essential oils and *in vitro* establishment of *Helichrysum italicum* (Roth) G. Don ssp. *microphyllum* (Willd.) Nym. *Industrial Crops and Products*, **29**, 395–403.
- [5] (a) Rao H, Lai P, Gao Y. (2017) Chemical composition, antibacterial activity, and synergistic effects with conventional antibiotics and nitric oxide production inhibitory activity of essential oil from *Geophila repens* (L.) I.M. Johnst. *Molecules*, **22**(9), 1561; (b) Jacob JN. (2016) Comparative studies in relation to the structure and biochemical properties of the active compounds in the volatile and nonvolatile fractions of turmeric (*C. longa*) and ginger (*Z. officinale*). *Studies in Natural Products Chemistry*, **48**, 101–135.
- [6] Kew BG. (2017) Specimen: K000978204 *Helichrysum thianschanicum* Regel. Available from: <http://specimens.kew.org/herbarium/K000978204>
- [7] Sharopov FS, Kukaniev MA, Setzer WN. (2011) Composition of the essential oil of *Origanum tyttanthum* from Tajikistan. *Natural Product Communications*, **6**, 1719–1722.
- [8] Adams RP. (2007) *Identification of Essential Oil Components by Gas Chromatography / Mass Spectrometry*, 4th ed. Allured Publishing, Carol Stream, Illinois.